A Complete Axiomatization for Branching

Bisimulation Congruence of Finite-State Behaviours

R.J. van Glabbeek™

Computer Science Department, Stanford University
Stanford, CA 94305, USA.

rvglcs.stanford.edu

This paper offers a complete inference system for branching bisimulation congruence on a basic
sublanguage of CCS for representing regular processes with silent moves. Moreover, complete
axiomatizations are provided for the guarded expressions in this language, representing the
divergence-free processes, and for the recursion-free expressions, representing the finite processes.
Furthermore it is argued that in abstract interleaving semantics (at least for finite processes)
branching bisimulation congruence is the finest reasonable congruence possible. The argument
is that for closed recursion-free process expressions, in the presence of some standard process
algebra operations like partially synchronous parallel composition and relabelling, branching
bisimulation congruence is completely axiomatized by the usual axioms for strong congruence
together with Milner’s first 7-law a7 X = a X.

Contents
1 Introduction oL 1
2 A language for finite-state behaviours L o oo oL 3
3 Branching bisimulation congruence oo oL oL 6
4 The axioms 0 L o e e 8
5 Completeness for guarded process expressionso 10
6 Completeness for finite process expressions oo 12
7 Completeness for all process expressions o oo 13
8 Concluding remarks L 14

1

Introduction

An important class of mathematical models for concurrent systems are the term models, in which

a process or behaviour (of a system) is represented as a congruence class of expressions in a system
description language. The best known system description language is MILNER’s Calculus of Com-
municating Sytems (CCS), and the best known congruence on CCS expressions! is bisimulation
congruence [7]. The choice of bisimulation congruence was originally motivated by a notion of

observabilily: “processes are equal iff they are indistinguishable by any experiment based on obser-

vation” [7]. However, since the appearance of bisimulation congruence, many alternative notions

*This work was supported by ONR under grant number N00014-92-J-1974.
'In this first paragraph I restrict myself to expressions that model behaviours without hidden moves (7-actions).

of observability, or testing scenarios, have been proposed, all leading to different—and invariably
coarser—congruences. See VAN GLABBEEK [3] for an overview. What makes bisimulation congru-
ence special among all these alternatives is not so much the underlying notion of observation, but
the fact that it is the finest reasonable congruence. To be precise, this is the case in interleaving
semantics, where the “concurrent occurrence of two observable actions is not distinguished from
their occurrence in arbitrary sequence” [7]. In non-interleaving semantics one finds finer congru-
ences, but the finest ones are just variations of bisimulation congruence that take causal dependence
between action occurrences explicitly into account. What makes bisimulation congruence the finest
reasonable congruence are two properties:

e Any two bisimilar process expressions have the same internal structure, to be precise the same
branching structure. As the observable behaviour of processes according to any alternative
(interleaving based) testing scenario is completely determined by their branching structure,
it follows that other observable congruences must be coarser.

e IFiner equivalences than bisimulation congruence (such as tree equivalence or graph isomor-
phism) suffer from serious drawbacks such as a higher complexity (to decide the equivalence
of finite-state behaviours) and the inequivalence of standard operational and denotational
interpretations of CCS-like system description languages.

A crucial tool in practical applications of system description languages like CCS, especially for
verification purposes, is an abstraction mechanism. Abstraction is usually performed by turning
actions that are considered unimportant into the invisible action 7. Then, a system that after some
activity reaches a state from which only an invisible action is possible, leading to another state, is
considered equivalent to an otherwise identical system, that after said activity immediately reaches
the other state. Thus the mechanism of abstraction by hiding of irrelevant or unobservable actions
needs support from the congruence notion employed.

There are many ways to extend bisimulation congruence to processes with hidden moves. The
simplest generalization is strong (bisimulation) equivalence, in which T-actions are treated no dif-
ferent than visible actions. For this reason strong congruence is not abstract in the sense stipulated
above. Another option is to take the testing scenario underlying bisimulation equivalence as pri-
mary, incorporating the unobservable nature of hidden moves. This yields MILNER’s notion of weak
(bisimulation) congruence [7], also called observation congruence, in spite of the rather far-going
assumptions about the capabilities of observers that need to be made for weak congruence to be
truly observable. In VAN GLABBEEK & WEIILAND [4] another generalization of bisimulation con-
gruence was proposed. Branching (bisimulation) congruence is not so much motivated in terms
of its testing scenario (although it has one that is arguably only twice as contrived as that of
weak bisimulation congruence), but generalizes the property of bisimulation congruence of being
the finest reasonable interleaving congruence to an abstract setting. To be precise: it preserves the
branching structure of processes (unlike weak congruence) [4], and (at least for finite processes) any
finer or incomparable abstract version of bisimulation congruence violates the ezpansion theorem
[7], that is characteristic for interleaving semantics.

Besides a substantiation of the last claim, this paper offers a complete axiomatization of branch-
ing bisimulation congruence for a sublanguage BCCS® of CCS, only containing operators for action,
inaction, choice and recursion. The B stands for Basic and w is a strict upper bound for the number
of arguments of the choice and recursion operators. This language represents all and only the reg-
ular processes or finite-state behaviours. Moreover, complete axiomatizations for two sublanguages

are given: the language of recursion-free BCCSY expressions, representing the finite processes, and
the language of guarded BCCSY expressions, representing the divergence-free processes, where a
processes is divergent if it has a state from which an infinite sequence of hidden moves is possible.

A complete axiomatization for strong congruence on BCCS* was provided in MILNER [5]. It
consisted of the axioms E1-4, A0-3 and R1-3 of Section 4 (as well as a-conversion, which is deriv-
able). A complete axiomatization for weak congruence on a slightly different language was first
provided in BERGSTRA & KLOP [2]. A more aesthetic axiomatization (on BCCS¥), partly inspired
by the one in [2], was given in MILNER [6]. It consisted of the axioms for strong congruence, 3
so-called 7-laws, and 2 extra axioms for unguarded recursion (besides R3). The present axiom-
atization counts, besides the axioms for strong congruence, only one 7-law, but 3 extra axioms
for unguarded recursion (all weaker than the axioms for weak congruence). In all three cases the
axioms for unguarded recursion can be dropped to obtain complete axiomatizations for guarded
expressions, and on top of that R1 and R2 can be dropped to obtain complete axiomatizations for
finite processes.

Milner’s completeness proof was delivered in five steps:

(a) Any expression can be converted into a guarded one.
(b) Any guarded expression provably satisfies a standard guarded set of equations.

(c) Any standard guarded set of equations can be converted into a saturated one (preserving the
property of being provably satisfied by an expression).

(d) Two congruent processes that each provably satisfy a saturated standard guarded set of equa-
tions, provably satisfy a common guarded set of equations.

(e) If two guarded expressions satisfy the same guarded set of equations, they are provably equal.

Steps (b) and (e) only use the axioms for strong congruence, and can thus be applied in the setting of
branching bisimulation as well. Step (a) can be made completely analogous, even though the present
axioms for unguarded recursion are much more complicated (in particular, the side-condition of R4
can not be eliminated, as could be done for the corresponding axiom R5 in [6]). Step (c¢) must be
skipped as saturation is unsound in branching bisimulation semantics, and therefore step (d) needs
to be made more subtle. But the absence of step (c¢) makes it possible to incorporate step (b) into
step (d) at no extra cost.

The completeness theorem for branching congruence on recursion-free process expressions, at
least the closed ones, was already proven in [4] by the method of graph transformations, due to
BERGSTRA & KLop [1]. The present proof is distinctly shorter. On the other hand, the method of
graph transformations, once mastered, tends to deliver completeness proofs on finite closed terms
for arbitrary interleaving equivalences almost instantaneously, whereas the method used here seems
rather bisimulation oriented and requires more thought.

2 A language for finite-state behaviours

Let the nonempty set A of wvisible actions and the disjoint infinite set V' of variables be given. Let
T ¢ A be the invisible action or hidden move and write A, = AU {7}.

Definition 1 The set £ of process expressions over BCCSY is given by

X €f forX eV (variable)
0 cé (inaction)
aF €& fora€ A; and F €& (action)
E+F €& forE,Fef& (choice)
pXE €& for X € Vgand F €& (recursion)

The expression 0 represents a process that is unable to perform any action. aF represents a process
that first performs the action a and then proceeds as E. F'+ F represents a process that will behave
as either F or F, and pX F represents a solution of the equation X = F.

Definition 2 An occurrence of a variable X in an expression F € &£ is bound if it occurs in a
subexpression of the form pX F. Otherwise it is free. E is open if it contains a free occurrence of a
variable, and closed otherwise. E{F/X } denotes the result of substituting F for all free occurrences
of X in E, if necessary? renaming bound variables in E in order to ensure that no free occurrence

of a variable in F' becomes bound in E{F/X}. Likewise F{FEx/X}xcyr, for V! C V denotes the
result of simultaneously substituting Fy for X in the same fashion.

Definition 3 The transition relation —C & X (A; UV) X & is the smallest relation satisfying
o X H0for X eV
e aF S Eforac A,
e if "5 Gor F -~ Gthen E+F -5 G
o if E{uXF/X} = F then uXF 5 F

Here £ - F for a € A, means that the system represented by E can perform the action a,
thereby evolving into F, and F X, 0 means that the system represented by F has the possibility
to continue as whatever system is substituted for the variable X.

Definition 4 Let ¥ € £. The set £z of process expressions reachable from F is defined as the
smallest subset of £ satisfying F € £g and if F -5 G with a € A, and F € &g then G € &g.

Proposition 1 &g is finite for K € £.

Proof: Consider the transition relation —C &' x (A, U {+,1}) x &, given by
e «ESF
e E+F S5 Eand E+F 5 F

o uXE 5 E{uXE/X}

?Renaming is necessary if a free occurrence of X appears in a subterm pY G of E with Y occurring free in F.

Here &' is defined as &, except that every operator symbol (X, 0, a,+, 4 X) in an expression F € &’
is coloured either red or black. Furthermore, if in a subexpression a«F, F + G or uXF of F the
leading operator a, + or pX is coloured black, the entire subexpression must be black. Whether
an occurrence of a variable is free or bound does not depend on its colour. Substitution on &’ is
defined such that E{F/X} means E{black(F)/X} (i.e. a black version of F'is substituted for any
free red or black occurrence of X), and renaming of bound variables doesn’t change their colour.
Furthermore colours are preserved under transitions.

Choose FE € £ and let &}, be the set of coloured expressions in £ that are reachable by — from
red(E). If F %5 F' for F,F' € £, and Fy € £ is a coloured version of F, then there must be
Fi,...,F,y1 € & with n € N such that F;_; i F; or F;_4 Ay Fifori=1,...,n, F, 5 F, 41 and
F,41 is a coloured version of F'. Thus for any F' € £ a coloured version appears in £, and it
suffices to proof that £ is finite, or becomes finite after forgetting the colours.

Observe that if an expression F' is partly red and FF — F’ then the red part of F’ is smaller
than the red part of F. Thus there are only finitely many expressions in £}, that are partly red.

Furthermore observe that for any F' € £}, if F' contains a subexpression pY G with pY red,
then no black subexpression of G contains a free occurrence of Y. This property is trivially true
for red(E), trivially preserved under % and i>7 and preserved under % by the renaming-of-bound-
variables convention of Definition 2. It follows that if ¥ € &}, is partly red and F' — F’, then
the black subexpressions of I’ that are inherited by F’—unlike the red ones—are unchanged in F”.
Thus if H € £, is partly red, H — H' and H' is completely black, then H' has the form ¢ XG and
has been generated by a derivation uXG % G{uXG/X}. Hence the black term H = uXG € &%
also occurs as a partly red term pXG € .

It follows that £g is finite. In fact £ contains at most one element more than it has subex-
pressions of the form aF'. a

Definition 5 A free occurrence of a variable X in an expression £ € £ is guarded if it occurs in a
subexpression of the form aF with a« € A (i.e. @ # 7). X is (un)guarded in E if (not) every free
occurrence of X in F is guarded. A process expression F € £ is guarded if for every subexpression
uXF, X is guarded in F. Let &9 C &£ be the set of guarded process expressions over BCCS®.

Definition 6 A process expression F € £ is called finite or, more accurately, recursion-free if it
has no subexpression of the form pXF. Let &/ C £9 C £ be the set of finite process expressions
over BCCS¥.

Lemma 1 If F € £/, then the relation — is well-founded in &x. This means that there are no
F; € &g and a; € A, for i € N with F; =% Fiy for i € N,

Proof: If F € £/ and F - F' then F' € £/ and F’ is smaller than F. O
Lemma 2 If £ € £9, then the relation — is well-founded in £x.

Proof: First note that if £ is guarded and F € &g then F is guarded. This follows with a
straightforward induction on derivations. For F € &, let F* be F, in which every occurrence of
a subterm aG with @ € A is replaced by 0. Note that if F’ is guarded then F* is guarded, and
if ¥ 5 G then F* 5 G*. Now suppose there is an infinite path Fy — F}, - F, — --- as
denied in the lemma. Then there must be an infinite path Ff — F; —» Fy — --. only passing
through guarded process expressions without subexpressions of the form aG for ¢ € A. But if H is

such an expression and H — H', then H'is smaller than H, yielding a contradiction. O

Write £ = FE’ if there are Ey, ..., E, € £ with E=Fy — F; — ... 5 E, = E'.

Lemma 3 X € V is unguarded in F € £ iff E = F' X 0.
Proof: Straightforward. O

Definition 7 Renaming of bound variables is called a-conversion. Write £ =, F if F, F € £ only
differ by a-conversion.

Lemma 4 Let x € A, UV.

1. H S 0MNE-SF = H{E/X}-5F

2. H- 5 H' ANe#X = H{F/X}-=s H'{E/X} with H =, H"

3. HE/X} -5 F = (HS0AE S F)V(@£XAH - H =, H'AF=H'{E/X})
Proof: 1. and 2. are stralghtforward by induction on inference. I will prove 3. by induction on the
inference of H{F/X} -2+ F. In case H = X the first alternative applies: H X 0AE 2 F
The cases F =Y # X, H =aG, H = Hi + Hy and H = pXG are straightforward, so assume
H =pYG withY # X. Let H = pY G be the result of renaming bound variables in H, as described
in Definition 2. Now by a shorter inference G{E/X}{H{E/X}/Y} G{H]Y }{E/X} =3 F, so

by induction (H—>0/\E—>F) (x#XANH 2 H =, H'ANF = H'{E/X}), from which the
desired conclusion follows. O

3 Branching bisimulation congruence

Definition 8 A branching bisimulation is a symmetric relation R C £ x &£ such that Vo € A, UV:

z=71and (E,F)€eR

if (E,F E = E' th v
if (E,F)e RANE — en or IF" F': F = F" 25 F'A(E,F") e RA (E',F') € R.

Two expressions £ and F' are branching (bisimulation) equivalent—notation E <, F—if there exists
a branching bisimulation R with (E,F) € R.

For further motivation of branching bisimulation equivalence see VAN GLABBEEK & WEIJLAND
[4]. The consise definition above is possible thanks to the following lemma.

Lemma 5 If F&, F, E9, F” and F — F”, then F &y F' for any F' with FF — F' — F".
Proof: In [4]. O

It is more common to use Definition 8 for closed process expressions only, thereby avoiding the use
of the transitions —> and to extend the definition to open process expressions by

E &y I iff for all closed process expressions G, E{G/X} &, F{G/X }

By Propositions 2 and 3 below both approaches yield the same equivalence relation. The way
of defining <, on open process expressions employed here is a mild variation of the way weak
equivalence was defined in MILNER [6]. It does not carry over to full CCS.

Proposition 2 &, C £ x £ is a bisimulation and an equivalence, satisfying, for F, F,G € £
Eey F= F{G/X} e, F{G/X}.

Proof: The identity relation Idg is a branching bisimulation and if R and § are branching bisim-
ulations, then so are R™! and Ro S = {(E,F) | 3G € € with (E,G) € R and (G, F) € S}. Hence
£y is an equivalence.

If R; (i € I) are branching bisimulations, so is [J;c; Ri. Thus €3 = J{R | R is a bisimulation}
is a branching bisimulation.

{(F{G/X}, F{G/X})| E< F, G € £}Uldg is a bisimulation by Lemma 4 (using =,C 4).0

Proposition 3 If F{G/X} & FF{G/X} for all closed process expressions G, then F & F.

Proof: As A is nonempty, there is an a € A. It is easy to see that a2y a™ for m # n,
where ¢” = aa---a0 with n a’s. Thus, by Proposition 1, for given F and F it is possible to
choose n € IN such that a®~'¢4, H and thus a"~ 144, H{a"/X} for H € £ U £p. By assumption
E{a"/X} ¢y F{a"/X}. It suffices to prove that {(F', F') C &g x Ep | E'{a" /X } &4 F'{a"/X}}
is a branching bisimulation, which is a straightforward application of Lemma 4. a

The following is a powerful tool for establishing statements F <, F. It is analogous to MILNER’s
notions of strong bistimulation up to &, and weak bisimulation up to <, . As for weak bisimulation
up to &, , versions of the notion below without the double arrow in the premises are easily seen
to be unsound [7].

Definition 9 A branching bisimulation up to € is a symmetric relation R C £ x & such that if
ERF and £ = E' =5 E" with E€, E' and ¢ # 7V E'$, E" then 3}, B}, F|, F{', F', F"" such
that

E R F

E' &, El R F &, F

E" &, E! R F' €, F"
Proposition 4 If R is a branching bisimulation up to €, and EFRF, then F &y F.

Proof: It suffices to prove that the relation <, R <y = {(Fo, [o) | IE, F: Eg ey ERF & Iy} isa
branching bisimulation. So suppose Ey, E, F and Fy are as indicated, and Ey — E!. Then either
z = 7 and EJ €, E, which completes the proof, or there are £’ and E” with F = E' = E",
E'oy Eyey Eand B &y EJ(% E if @ = 7). In the latter case apply Definition 9, and use that
Foe F = F' = F'"implies # = TAF" & Fy or Fy = I}, = F} with F' &y F) and F" <, F)
by Definition 8 (and in one case Lemma 5 to find F{).]

Just like weak bisimulation equivalence, branching equivalence is not a congruence on BCCSY¥.
Also the simplest counterexample is the same: a <, 7a but, for b # a, a + b%#, 7a + b. Here, as
usual, a0 is abbreviated by a and action prefixing binds stronger than choice. Milner selected weak
bisimulation congruence to be the largest (= coarsest) congruence contained in weak equivalence,
and the same solution is applied here. Just like weak congruence, branching congruence has a nice
characterization, showing that it is close to the original equivalence.

-~

Definition 10 Two expressions E and F are rooted branching bisimulation equivalent or branching
(bisimulation) congruent—notation F <., F—if Vo € A, UV:

FE =5 B'implies 3F' 1 F =5 F'AE &, F'
F 5 Flimplies 3" : F =5 E'ANE' &, F'.
Proposition 5 (Congruence) <, is an equivalence relation such that
if W=Fthenak =aF, F4+G=F+G, G+F=G+F and pXFE =upXF.
Moreover it is the coarsest relation with these properties contained in <y .
Proof: Similar to the congruence proofs for strong and weak bisimulation congruence in [7]. O

The following shows that the definition of ¢, for open expressions yields the same notion as the
standard approach based on substitution of closed terms.

Proposition 6 Let F,F € £ Then F < F implies E{G/X} &, F{G/X} for G € &, and if
E{G/X}ey, F{G/X} for closed G € &, then F &y F.

Proof: Straightforward with Lemma 4, using Propositions 2 and 3 and the same GG as before. O

MILNER [7] listed two results that show how close weak equivalence and congruence are to each
other. The first was that for stable processes (processes without outgoing 7-transitions) the equiv-
alence and congruence coincide. This result carries over to branching bisimulation, as follows
immediately from the definitions. The second result says that in each weak bisimulation equiva-
lence class there are at most two congruence classes, with representatives F/ and 7F for some F € £.
This is not true for branching bisimulation, indicating that branching equivalence and congruence
are less close than weak equivalence and congruence. However, a corollary of this property does
hold, showing that the distance is still reasonable.

Proposition 7 F o, F < tE&,,7F.
Proof: Immediate from Definition 10. O

This proposition effectively turns any complete axiomatization for *,; into one for <.

4 The axioms

The following set of axioms will be proven to be sound and complete for <,;. The entries below
are actually axiom schemes, in metavariables F, F,G € £, X € V and (in the axiom B) a € A,.
This means that there is an axiom for every choice of F, F,G, X and a. The axiom schemes E1-3
and Al-4 could be replaced by single axioms, by using real variables X,Y and Z instead of the
metavariables F, F'and G, and adding the law of substitution: if £ = F then F{G/X} = F{G/X},
which is sound by Proposition 6. However, this would not work for R1-6, since the bound variable X
is allowed to occur in £, F' and G. The axioms pXE = pY (E{Y/X}) (a-conversion) are derivable

from R1-6, using Theorem 3 and R2.

El F=F

E2 if ¥ = F then ' = F

E3 if F=F and F = then E =G

E4 if E = F then aFk =aF, F+G=F+G, G+ FE=G+F, and pXFE =uXF

A0 F+0=F

Al F4+F=F+FE

A2 E4+ (F+G)=(E+F)+d
A3 F+E=F

B a(rf(F+F)+FE)=aF+F) forac A,

Rl pXE=E{uXE/X}
R2 if = E{F/X} then F = pXFE, provided X is guarded in F

R3 uX(X +E) = uXE
R4 puX(r(tE+ F)+G) = pX(7(E+ F) 4+ G), provided X is unguarded in F
R puX(r(X+E)+7(X+F)+G)=pX(t(X+E+F)+G)

R6 puX(r(X+E)+F)=puX(r(E+ F)+ F)

One writes T+ F = F, with T a list of axiom names, if the equation £ = F is derivable from the
axioms in T'. Moreover, in this paper the convention is adopted that the axioms E1-4 and A0-3
are always in 7T, even if not explicitly listed. In the next 3 sections I will establish the following
completeness theorems.

e For F,.Fe&9 FEFe,F < BRI2FE=F
efor B, Fe&l: EewF < BFE=F
e for K. Fe&: FEe.,F < BREFE=F
The rest of this section will be devoted to the soundness of the axioms.

Soundness: The soundness of E1-4 is established in Proposition 5. As far as R1 concerns, one has
puXE - F < E{uXFE/X}-2s F from which it follows that uX E ., E{uX E/X} (the terms
are even strongly bisimilar). In the same way the soundness of A0-4 is established. By inspection of
their outgoing transitions, it follows that {(7(E+ F)+ E, E+ F)}Uldg is a branching bisimulation
and hence a(r(E+ F)+ E) & pa(E+ F).

Proposition 8 If F'&,, F{F/X} then F &, uXFE, provided X is guarded in FE.

Proof: For G, H € & write H(G) for H{G/X}. Let E,F,G € &, such that X is guarded in £,
F & E(F) and G &, E(G). 1 will show that the symmetric closure of {(H (E(F)), H(E(G))) |
H € &} is a bisimulation up to ¢;. So suppose that H(F(F)) = K' — K" (in this proof
one doesn’t even need to assume that H(E(F)) €, K’ and @ # 7V K'$, K”). As X is guarded
in £ and hence in H(F), it cannot be that H(E) = 0, by Lemma 3. Thus K’ and K"
are of the form H'(F) and H"(F) by Lemma 4.3, and by Lemma 4.2 H(E(G)) = H"'(G) -
H"'(G) with H" =, H' and H"" =, H". Furthermore, by Proposition 5, H'(F(F)) & H'(F),

H"(G) <y H'(E(GQ)), H'(E(F)) 2, H'(F) and H"'(G) &, H"(E(G)). The requirement starting
with H(F(G)) follows by symmetry, so the relation is a branching bisimulation up to ¢, and by
Proposition 4 H(E(F)) <y H(E(G)) for H € €. Using this, a repeat of the argument above with
K'= H(E(F)) gives H(E(F)) €., H(E(G)), so in particular E(F) &, E(G), and hence F £, G.
Finally take G = p X E. a

Proposition 9 uX(7(TE+ F)+G) €, pX(7(E+ F)+ G), provided X is unguarded in E.

Proof: By Lemma 3 there are Ey,..., F, such that 76+ F — Ey — Ey — ---E, l) with
Fo= F and n € N. Write E! | for TE+ F and E for E+ F. Then by Lemma 4

L B {L/X} 5 E{L/X} D E{L/X} - E'{L/X} = B {L/X}
for certain E! =, F; (i=0,...,n) and
R - EJ{R/X} s E/{R/X} 5 - E/{R/X} = EJ/{R/X}
for certain E;-/ =2 FE; (j=1,...,n). Let R C & X & be the symmetric closure of
((H{L/XY, H{R/X)) | H= H'} U{(E{L/X}, E{R/X})| ~1<i<n, 0<j<n}
Then R is a branching bisimulation and L <, R by Lemma 4. a
Proposition 10 puX(r(X+ E)+ (X + F)+G) €. pX(71(X+E+ F)+G).
Proof: The closure under symmetry and a-recursion of {(H{L/X}, H{R/X}) | H € £}U
{(r(X + EYL/X Y, 7(X + B+ F)Y{R/X) U{(r(X + F){L/X}, 7(X + E + F){R/X})}
is a branching bisimulation. a
In the same way one proves the soundness of R3 and R6.
Proposition 11 pX(X + F) €, pXFE.]
Proposition 12 puX(r(X + E)+ F) €, pX(r(E+ F)+ F). a

Corollary 1 (Soundness) For £, F € &: BREFE=F = E&,.,F.

5 Completeness for guarded process expressions

Let, for S = {Fy,...,E,}, Y. S be an abbreviation for Fy + ---+ E,. This notation is justified by
the axioms A0-3.

Lemma 6 For F € &9, RlFE:Z{aE’|Ei>E’}—|—Z{W|Eﬂ>0}_

10

Proof: By induction on the number of recursion operators in F, not counting the ones that
occur in a subterm aG. If this number is 0, then £ has the form } ;c;a;F; + 3 ;c; W, with
a; € A; and W; € V (the so-called head normal form) and the statement holds trivially. Otherwise
E has a summand pgXF, which can be replaced by F{uXF/X} using R1, yielding E”. As E
is guarded, F’ has less recursion operators that don’t occur in a subterm aG, so by induction

RIFE"=S{aE' | E" 5 E}+ S {W | E" 250} As B 25 E' & E 23 E'forz € A, UV,
the statement follows. O

Definition 11 A recursive specification S is a set of equations {X = Sx | X € Vg} with Vg CV
and Sy € £ for X € Vs. E € & T-provably satisfies the recursive specification S in the variable
Xo € Vg if there are expressions Ex for X € Vg with Y = Fx,, such that for X € Vg

Definition 12 Let S be a recursive specification. The relations —C Vg x Vg and —C Vg x Vg
are defined by

e X 5 Y if Y occurs free in Sy
e X 5 Y if Y occurs free and unguarded in Sx

Now S is called well-founded if — is well-founded on Vs, and guarded if - is well-founded on
Vs.

Proposition 13 (Unique solutions) If S is a finite guarded recursive specification and X € Vs,
then there is an expression E which R1-provably satisfies S in Xg. Moreover if there are two such
expressions F and F, then R2+ F = F.

Proof: In MILNER [6]. O

Theorem 1 Let Ey, Fy € &9 with Fy <, Fy. Then there is a finite guarded recursive specification
S BR1-provably satisfied in the same variable Xg € Vg by both Fy and Fg.

Proof: Take a fresh set of variables Vo = {Xgp | E € €g,, F € €, E<y F}. Xo = XEg,5,- Now
for Xgr € Vs, S contains the equation

Xpr=Y{WI|EL 0and F L5 0} + > {aXpp | E -5 E', F % F' and E' &3 F')+

S {rXpr | Xpp # Xo, B B and '€, FY+ Y {rXpp | Xpp # Xo, F -5 I and B, I},

Using that Xgr — Xpip iff Sxp has a summand 7 Xg/p, it is easy to show that any infinite
u-path Xpp —— Xpgipr — -+ implies an infinite 7-path £ — E' *5 ... or F 5 F' 5 ...
which cannot exist by Lemma 2 since FEy and Fy are guarded. Hence S is a guarded recursive
specification. Moreover S is finite by Proposition 1. It remains to be established that Fy BRI1-

provably satisfies S in Xg. The same statement for Fy then follows by symmetry.

For Xgp € Vs, let Hgp be the expression Z{W | £ W0 and F 0}+
+> {aE' |E -5 E, F 5 F and ', F'}+ Y {rE' | Xpr # Xo, E - E' and E' & F}

11

and define the expression Ggp by

Hpp +7E if Xpp # Xo and 3F' with F 5 F' and E&, F'
Ggr = .
FE otherwise.

It follows from Lemma 6 that R1+ F = E' 4+ Hgp and hence BR1 F a(Hgp + 7E) = aE. Thus
BR1FaGrp =aF forac A,. (1)

It suffices to prove that for Xgp € Vg
BRIF Gpp=Y AW | E 5 0and F 25 0} + 3 (oG | E -5 E', F % F and E' < F'}+

E{TGE’F | XEF 75 Xo, E L) E" and E/(:)bF}—}—Z{TGEF/ | XEF 75 Xo, F L) F/ and Et)bF/}.
By (1) this is equivalent to
BRIt Gprp = Hpr+ » {TE | Xpr # Xo, F — F' and E¢, F'}. (2)

In case Xpr # Xo and 3F with I/ - F' and E &, F', this follows from the definition of Ggp.
In case Xgr # Xo and ZF’ with F - F' and F < F', (2) reduces to BR1 - F = Hgp, and by
Lemma 6 if suffices to establish, for z € A- UV, that

r=7and E'&y F

if E -2y E' th -
e N AR F By FOAE oy F

But this follows from E ¢y F', using that if ' - I}, = F" with F" &y F <y F, then E & F) by
Lemma 5, violating the assumptions. Finally, in case Xgr = Xj, (2) also reduces to BR1 - F =
Hpgp, and this time I have to establish, for x € A- UV, that

if # =5 E' then 3F' : F =5 F'AE & I,
which follows immediately from E &, F. O

Corollary 2 (Completeness) For £, F' € £7: E<, F < BR1-2FE=F.

6 Completeness for finite process expressions

Theorem 2 Let Ey, Fy € & with Ey &, Fy. Then there is a finite well-founded recursive specifi-
cation S B-provably satisfied in the same variable Xg € Vg by both Ey and Fy.

Proof: The construction of S is exactly as in the proof of Theorem 1. Using that Xgp 2 Xpip
iff Sx,, has a summand aXg/p with a € A, it is easy to show that any infinite o-path Xgp =
Xpipr — -+ implies an infinite path £ = E' 25 ... or F LI LEN -+« which cannot exist
by Lemma 1 since Fy and Fy are finite. Hence S is a well-founded recursive specification. The
proof that S is finite and provably satisfies both Fy and Fy in X is exactly as before, except that
Lemma 6 is not needed, as recursion-free process expression are already in head normal form and
therefore satisfy

FE=Y {aF' |E-SEY+Y (W E L0y

without using axiom R1. As this was the only call for this axiom in the proof of Theorem 1 it
follows that S is B-provably satisfied in Xy € Vg by both Fy and Fp. o

12

Proposition 14 (Unique solutions) If S is a finite well-founded recursive specification and X €
Vs, then there is an expression FE which provably satisfies S in Xg. Moreover if there are two such
expressions F and F, then - K = F.

Proof: By induction on the number of equations in S I find expressions Ey for X € Vg, such that
FEx =Sx{Ly/Y}yev,

and if there are F'y € & for X € Vg such that - Fy = Sx{Fy/Y }yev, then - Ex = Fy for
X e Vs.

If S has only one equation X = Sy then X does not occur free in Sy by the well-foundedness of
—5. Hence Sy provably satisfies S, and for any other expression F satisfying S one has - F = Sy.

Now suppose that S has more than one equation. By the well-foundedness of —— there must
be a variable Z € Vg such that Y -+ Z for no Y € Vg. Obtain T from S by deleting the equation
Z = Sz. By induction there are Fx € £ for X € Vp, such that - Fx = Sx{Ey /Y }yey, and if
there are Fy € € for X € Vg such that F Fx = Sx{Fy /Y }yev, then - Ex = Fy for X € V. Let
Ey; = SX{EY/Y}YEVT- Then, for X € Vg,

FEx =Sx{Ey/Y}vevy = Sx{Ey/Y}vevs

and if there are Fy € & for X € Vg such that - Fy = Sx{Fy/Y }yev, then - Ex = Fy for
X € Vp and hence - Fy = SZ{FY/Y}YEVS = SZ{FY/Y}YEVT Eél SZ{EY/Y}YEVT =Fy. O

Corollary 3 (Completeness) For B, F ¢ &/: Ee,F < BFE=F.

7 Completeness for all process expressions

Theorem 3 For every E € £ there exists a guarded expression F’ with R1,3-6 - £ = E’.

Proof: It suffices to prove this for expressions of the form F = pX F. Following Milner, I prove a
stronger result by induction on the depth of nesting of recursions in F, namely

For every I € £, there exists a guarded expression F” for which

e X is guarded in F’

e No free unguarded occurrence of any variable in I’ lies within a recursion in F’
e RI3-6F uXF =pXF'.

Assume that this property holds for every G whose recursion depth is less than that of F’. Then
for each recursion pY G in F that lies within no other recursion in F, there must be a guarded
expression G’ such that Y is guarded in G’, no free unguarded occurrence of any variable in G’
lies within a recursion in G’, and R1,3-6 - pYG = pYG’. These conditions ensure that no free
unguarded occurrence of any variable in G’'{uY G’/Y} lies within a recursion in this expression.

Let Fy be the result of simultaneously replacing every such top-level recursion pY G in F by
G'{pYG'/Y}. Clearly F) is guarded, R1,3-6 - F' = Fj, and no free unguarded occurrence of any
variable in F} lies within a recursion in Fy. In converting F} to F’ such that R1,3-6 = uX F} = uX F’,
it remains only to remove all free unguarded occurrences of X from Fj, knowing that they do not
lie within recursions. Here the axioms R3-6 are applied.

13

First any free unguarded occurrence of X that is not in the scope of a 7 prefixing operator
can be removed by R3. Next for any free unguarded occurrence of X that is in the scope of 2
or more 7’s, this number can be lowered by application of R4. Applying R4 from left to right
does not change the number of free unguarded occurrences of X, and does not raise the number of
7’s scoping any particular such occurrence. So after finitely many applications all free unguarded
occurrences of X are in the scope of exactly one 7 operator, and applying R5 makes that they are
all in the scope of the same 7. Finally by A3 at most one such occurrence remains, and this one is
eliminated by R6. a

Corollary 4 For E,F e &: Fo.,F < BRFE=F.

8 Concluding remarks

The notion of branching bisimulation congruence employed here
e cquates livelock and deadlock: pX(7X) =70
e does not equate divergence and livelock: pX(7X + F)# puX(tX)+ FE
e abstracts from divergence: uX(tX +7F)=71F
e and chooses minimal solutions in case of underspecification: p XX =0,

just as Milner’s standard version of weak bisimulation congruence. As in the case of weak congru-
ence, there are alternative versions of branching congruence where these choices are made differently
[4]. Complete axiomatizations for these notions remain to be provided. For weak bisimulation, such
work has been done in WALKER [8].

For arbitrary cardinals k, one could define the language BCCS” by allowing sets of expressions
as argument of a choice operator), and functions Vg — & for Vg C V as argument of a recursion
operator u, as long as the size of these sets and functions is less than . Such a language would
represent all and only the behavious with less than s states. In generalizing the completeness
theorem for guarded BCCS” expressions, one has to reformulate most axioms in an obvious way to
deal with the new operators, slightly adapt the proof of Lemma 6 and make sure that there are at
least x variables in order for the first act in the proof of Theorem 1 to be possible. But nothing in
my proof essentially depends on finiteness, and the result generalizes smoothly to guarded infinite-
state behaviours. One could even take V to be a proper class and do away with all cardinality
restrictions. Of course these axiomatizations are not effective, as some axioms have infinitely many
premisis. The case for unguared expressions does not generalize in this way, as not every unguarded
BCCS” expression is branching congruent with a guarded one.

By combining the axioms presented here with the complete axiomatizations for strong bisimula-
tion that allow closed CCS, CSP and ACP expressions to be converted into head normal form, one
obtains complete axiomatizations for closed terms in the language BCCS* to which the ACCSP
operators have been added, provided that they do not occur in the scope of recursion operators (cf.
MILNER [6]). Remarkably, in this setting the axiom B can be simplified to a7 X = aX.

Theorem 4 Every closed instance of B is derivable from a7 X = aX.

Proof: (sketch) a(bc+ ¢b) + cab = abl|c = atb||c = a(7(bc+ ¢b) + ¢7b) + carb. Placing both sides in
CSP’s synchronous composition with a(b+c¢) yields a(b+¢) = a(7(b+c¢)+¢). In this proof b can be

14

replaced by 37, b; and similarly for c¢. Now a parallel composition with a(}-,c; b:F; 43 e ¢ Fj),
in which synchronization is required (only) for a,b; and ¢; yields

Q(Z b, E; + Z C]'Fj) = a(T(Z b E; + Z C]‘Fj) + Z C]'Fj).

el jeJ el jeJ jeJ

(In fact, one needs to assume here that the b; and ¢; are pairwise distinct, and do not occur in E},
and Fj, but this restriction can be removed with a relabelling.) O

If one would now require an abstract congruence to satisfy a7 X = a X, and an interleaving congru-
ence to be a congruence for all the operators needed above and to satisfy the equations needed above
(which are standard and already satisfied by strong congruence), and if one agrees that any finite
process is representable by an expression) a; F;, then it follows that for finite processes branching
bisimulation is the finest abstract interleaving congruence that generalizes 7-less bisimulation.

References

[1]

[2]

J.A. BERGSTRA & J.W. KroP (1985): Algebra of communicating processes with abstraction.
Theoretical Computer Science 37(1), pp. 77-121.

J.A. BERGSTRA & J.W. KLoP (1988): A complete inference system for regular processes with
silent moves. In F.R. Drake & J.K. Truss, editors: Proceedings Logic Colloquium 1986, Hull,
North-Holland, pp. 21-81. First appeared as: Report CS-R8420, CWI, Amsterdam, 1984.

R.J. vaN GLABBEEK (1990): The linear time — branching time spectrum. In J.C.M. Baeten
& J.W. Klop, editors: Proceedings CONCUR 90, Amsterdam, LNCS 458, Springer-Verlag, pp.
278-297.

R.J. vaN GLABBEEK & W.P. WELLAND (1990): Branching time and abstraction in bisim-
ulation semantics. Technical Report TUM-19052, SFB-Bericht Nr. 342/29/90 A, Institut fir
Informatik, Technische Universitdt Miinchen, Munich, Germany. Extended abstract in G.X. Rit-
ter, editor: Information Processing 89, Proceedings of the IFIP 11th World Computer Congress,
San Fransisco, USA 1989, Elsevier Science Publishers B.V. (North-Holland), 1989, pp. 613-618.

R. MILNER (1984): A complete inference system for a class of regular behaviours. Journal of
Computer and System Sciences 28, pp. 439-466.

R. MILNER (1989): A complete axiomalisation for observational congruence of finite-state
behaviours. Information and Computation 81, pp. 227-247.

R. MILNER (1990): Operational and algebraic semantics of concurrent processes. In J. van
Leeuwen, editor: Handbook of Theoretical Computer Science, chapter 19, Elsevier Science Pub-
lishers B.V. (North-Holland), pp. 1201-1242. Alternatively see Communication and Concur-
rency, Prentice-Hall International, Englewood Cliffs, 1989, of which an earlier version appeared
as A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, 1980.

D.J. WALKER (1990): Bisimulation and divergence. Information and Computation 85(2), pp.
202-241.

15

