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Abstract. We investigate which event structures can be denoted by means of
closed CCS � CSP expressions. Working up to isomorphism we find that

� all denotable event structures are bundle event structures,
� upon adding an infinitary parallel composition all bundle event structures are

denotable,
� without it every finite bundle event structure can be denoted,
� as well as every countable prime event structure with binary conflict.

Up to hereditary history preserving bisimulation equivalence finitary conflict can
be expressed in terms of binary conflict. In this setting all countable stable event
structures are denotable.

Introduction

In concurrency theory many languages for the representation of concurrent systems
have been proposed, including CCS, SCCS, CSP, MEIJE, ACP, COSY and LOTOS, all
in several variations. Although most of these languages were originally equipped with
an interleaving semantics, concurrency respecting interpretations have been proposed
by various authors, using semantical models like Petri nets, event structures, transi-
tion systems—optionally with additional structure to represent causal independence—,
causal trees, families of posets, etc. In recent years it has been established that there
are canonical translations between most of these models, thereby making them into
different representations of one and the same semantic concept [13, 17, 2, 19, 6]. In ad-
dition, the languages mentioned above are to a large extent intertranslatable, and can be
regarded as dialects of one and the same system specification language.

This paper deals with the question which of these unified semantic objects can be
denoted by closed expressions in this unified language. As a representative semantic
model we take the event structures from WINSKEL [17]. Our findings can then be trans-
mitted to other models by means of the canonical translations found in the literature.
As a representative language we combine some operators from CCS [12] and CSP [3,
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9]. Following a suggestion of Mogens Nielsen, such a combination is called CCSP. Our
version of CCSP is sufficiently expressive to emulate most constructions from other
languages found in the literature, including the ones provided with an event structure
semantics in [17]. The chosen combination of operators appears to be optimal for carry-
ing out the constructions in this paper. However, many other combinations would lead
to the same results.

In [17] the subclass of stable event structures is defined, as well as the further sub-
class of prime event structures. In [18] a subclass of event structures with a binary
conflict relation is proposed (see Figure 1 below). The prime event structures with bi-
nary conflict are exactly the (finitary) event structures originally introduced in [13]. It
is well known that unstable event structures cannot be represented in CCSP-like lan-
guages in a causality respecting way. It is an interesting quest to extend such languages
with novel operators that make this possible. This quest is not pursued here; we will be
happy to just find out which of the stable event structures are denotable.

It is unreasonable to expect to find a CCSP expression denoting a given event struc-
ture exactly. Hence we will try to find for any given stable event structure a CCSP ex-
pression whose denotation as event structure is semantically equivalent. This makes our
quest parametrised by the choice of a suitable semantic equivalence. We consider three
choices for this parameter: isomorphism, history preserving bisimulation equivalence
and (in this introduction only) ST-bisimulation equivalence.

Denotability up to isomorphism Up to isomorphism we characterise the denotable
event structures as the bundle event structures proposed in LANGERAK [11]. As we
will recall in Section 1, these include all prime event structures with binary conflict,
and are included in the stable event structures with binary conflict (cf. Figure 1). In [11]
examples can be found showing that these inclusions are strict.

event structuresstable

bundle

prime

binary conflict

Fig. 1. Several classes of event structures

Our characterisation of the bundle event structures as the event structures that can
be expressed by CCSP expressions is exact when dealing with the original finite bundle
event structures and recursion-free CCSP. Our characterisation is also exact when deal-
ing with arbitrary infinite bundle event structures and a version of CCSP with an infinite
parallel composition operator. However, when dealing with countable event structures
and CCSP expressions with arbitrary systems of recursion equations, or with recursive
enumerable event structures and a recursive enumerable version of CCSP, all we can
show is that the denotable event structures are a subclass of the bundle event structures
that include all prime event structures with binary conflict.

In Section 2 a denotational semantics of CCSP is given in terms of event structures
with binary conflict. This semantics follows the standard lines of [17, 18]. In the same
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section we show that the class of bundle event structures is closed under the CCSP op-
erators, thereby establishing that CCSP expressions can denote bundle event structures
only. Along the same lines one can show that the bundle event structures are closed
under action refinement [5], the choice operators � and � of CSP, and many other op-
erators found in the literature. We are not aware of any operator interpreted on event
structures for which the class of bundle event structures is not closed.

In Section 3 we show that up to isomorphism
� every finite bundle event structure can be denoted by a recursion-free CCSP ex-

pression,
� every countable prime event structure with binary conflict can be denoted by a

CCSP expression,
� and every bundle event structure can be denoted by a CCSP expression with an

infinitary parallel composition.

We also provide a recursive enumerable version of the second result. The same results
can be obtained for the language of [17, 18].

Denotability up to hereditary history preserving bisimulation equivalence The
concept of history preserving bisimulation equivalence stems from RABINOVICH &
TRAKHTENBROT [15] and was adapted to event structures in VAN GLABBEEK &
GOLTZ [5]. There it was suggested that the notion could be regarded as the coarsest
equivalence that takes the interplay of causality and branching time completely into
account. This makes the equivalence a semantically interesting choice of parameter to
instantiate our quest with. We arrive at the positive conclusion that up to history pre-
serving bisimulation every countable stable event structure can be denoted by a CCSP
expression. This result is obtained in three steps, the first of which is the aforementioned
denotability by CCSP expressions of countable prime event structures with binary con-
flict. In Section 4 we extend this to countable stable event structures, by observing that
that every countable stable event structure with binary conflict is history preserving
bisimulation equivalent with a countable prime event structure with binary conflict.

In Section 5 we complete the proof by showing that every countable stable event
structure is history preserving bisimulation equivalent with a countable stable event
structure with binary conflict. This result was first claimed by us in [8] for finite prime
event structures. The claim was strengthened in [6] to include infinite ones. The first
published proof (for prime event structures) appears in NIELSEN & WINSKEL [14],
who discovered the result independently. Their proof is somewhat nonconstructive how-
ever, in the sense that there is no construction giving a specific countable event structure
with binary conflict for any given countable stable event structure with arbitrary con-
flict. Our proof offers such a construction and is somewhat shorter as well.

The results above hold even when merely working up to hereditary history preserv-
ing bisimulation equivalence, which is a finer variant of history preserving bisimulation
equivalence, proposed by BEDNARCZYK [1].

Denotability up to ST-bisimulation equivalence The coarser ST-bisimulation equiva-
lence, proposed in VAN GLABBEEK & VAANDRAGER [7], respects branching time and
the possibility of actions to overlap in time, but abstracts from the faithful modelling
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of causality. By Theorem 1 in VAN GLABBEEK & PLOTKIN [6], every event struc-
ture, stable or not, is ST-bisimulation equivalent to a prime event structure. This result
keeps being valid when assuming and requiring countability. It follows that up to ST-
bisimulation equivalence every event structure can be denoted by a CCSP expression.

1 Bundle event structures

Bundle event structures are introduced in LANGERAK [11]. Here we add the alphabets
for typed bundle event structures and generalise the notion to structures with infinite
sets of events.

Definition 1. A (typed) bundle event structure is a 5-tuple ���������
	��
����������� where
� � is a set of events,
� 	�������� is an irreflexive and symmetric relation, the conflict relation,
� ����� ���!� is the bundle set, satisfying "#�%$'&)(*$ � ��$ �,+ ".-/$ �10�2$ � &3$ � 	4$ � ,
� � is a set of actions, the alphabet of � ,
� and �156��3� is the labelling function.

A bundle event structure represents a concurrent system in the following way: action
names 7 + � represent actions the system might perform and an event $ + � labelled
with 7 represents an occurrence of 7 during a possible run of the system. In order for
$ to happen it is necessary that for every bundle "8�9$ , one of the elements of "
occurred previously. The conflict :;	4$ means that the events : and $ cannot happen
both in the same run.

The components of a bundle event structure � will be denoted by �'<1�
	4<1�
��<=���><
and � < ; a convention that will also apply to other structures given as tuples.

The behaviour of a bundle event structure is described by explaining which subsets
of events constitute possible (partial) runs of the represented system (thus formalising
the interpretation of the bundle sets and the conflict relation). These subsets are called
configurations. The causal relationships between events in a configuration ? can be
represented by a partial order @>A .

Definition 2. The set BC�D�E� of (finite) configurations of a bundle event structure �F�
�D���G	H�G�I���J�
�K� consists of those finite ?L��� which are

� conflict-free: 	NMO�P?.�Q?R�S�UT ,
� and secured:V $ � �W-X-X-Y��$[Z��P\^]`_a�b5!?Q�Fcd$ � �W-X-Y-X��$dZfehgi(*j6@k\���lm�%$dnXo � &pc[$ � �q-Y-X-Y��$dn�ehMrl 0�QT;� .

The causality relation @ A on ? + BC�P�>� is c6��:s��$6� + ?t�^?Nu V lv5S: + lw�x$be o .
Here y o denotes the transitive closure of a relation y .

Following [5], we only consider finite configurations here; since the infinite configura-
tions which are usually considered are completely determined by the finite ones, this
causes no loss of generality. Note that if $ + ? + BC�D�E� and lz�`<^$ then ?�M�l has
exactly one element. Hence @>A is always a partial order.
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We now define the prime and the stable event structures with binary conflict, stem-
ming from WINSKEL [18], and show that the bundle event structures can be regarded
as a generalisation of the former and a special case of the latter.

Definition 3. A (typed) prime event structure with binary conflict
is a 5-tuple ��� �D���q@ �
	��������K� where

� � , � , and � are as above,
� @N��� ��� is a partial order such that (,$ + � 5ac[: + � u :�@�$6e is finite,
� and 	 �`����� is an irreflexive, symmetric relation satisfying

(*:h��$ � � + � 5b:H@`$ g�:;	 � &3$ 	 � -
Here :U@�$ means that : is a prerequisite for $ . Prime event structures with binary
conflict can be regarded as special bundle event structures, by defining

")�%$�� "#��c[:se g2:�@�$ -
The definition of configurations given above is then consistent with the one in [18].

Definition 4. A (typed) event structure with binary conflict
is a 5-tuple ��� �D���G	H���1��������� where

� � , 	 , � , and � are as for bundle event structures,���
	 ��cq"w�`� ud" finite and : 	4$ for no :h��$ + "te is the consistency predicate,
� and �O� ����	 ��� is the enabling relation, satisfying

"��2$!g�" ��l + ��
	 &%l��2$ -
� is stable if l��2$ implies that there is a least subset " of l with "��2$ .
"�� $ means that " is a possible cause of $ in the sense that $ can occur only if for
certain l with l���$ all events in l have occurred before.

Definition 5. The set BC�D�E� of (finite) configurations of an event structure with binary
conflict ��� �D���G	H���1��������� consists of those finite ?L��� which are

� conflict-free: 	NMO�P?.�Q?R�S�UT , i.e. ? + ���
	 ,
� and secured:

V $ � �W-X-Y-X��$ Z �D\ ]�_;� 5 ?��Fcd$ � �W-X-Y-X��$ Z e!g�(fj @`\Lc[$ � �q-Y-X-X��$ n e��2$ nXo � .

The causality relation @>A on ? is c6�D:h��$6� + ?.�Q?Ouq(*l 5bl��2$ &3: + l�e o .

The causality relation gives a faithful description of the causal relations in a config-
uration only if � is stable. As shown in [17, 18], unstable event structures can model
causal relationships that cannot be captured in terms of partial orders. The following
shows how bundle event structures can be regarded as special stable event structures
with binary conflict.

Definition 6. Given a bundle event structure ��� �D���G	H�G�I���J�
�K� , the associated event
structure with binary conflict � �P�>�S�F�����
	����1�������K� is given by

"��2$�� " + ���
	 g�(*l 5s�Dlm�%$ &3" M2l 0�UT ��-
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Proposition 1. � �P�>� is always stable. Moreover, the translation � preserves configu-
rations and the causality relations @ A on them.

Proof. Straightforward.

2 A denotational event structure semantics of CCSP

CCSP is parametrised by the choice of an infinite set ��� � of actions, that we will assume
to be fixed for this paper. We also assume an infinite set � of variable names. A variable
is a pair "�� with " + � and �F����� � . The syntax of CCSP is given by

� 5X5 �U_�� 	
7 � 	 ��
�� 	 ���� 	

y4� � � 	 "�� 	���
"��iu �

��
(with "�� + ���R�

with �F����� � , 7 + ��� � , y �`��� � ����� � , " + � and � a recursive specification: a set
of equations c[" � � ����� uh" � + � � e with � � ����� ��� � (the bound variables of
� ) and � � ����� �!� � for all " � + � � (were � � ����� � is defined below). The constant
_ � represents a process that is unable to perform any action. The process 7 � first per-
forms the action 7 and then proceeds as

�
. The process

��
��
will behave as either�

or
�

,


is a partially synchronous parallel composition operator, y a renaming, and��
"��!u �

��
represents the "�� -component of a solution of the system of recursive equa-

tions � . A CCSP expression
�

is closed if every occurrence of a variable "�� occurs in
a subexpression

��
l! Eu �

��
of
�

with "�� + ��� . An expression 7 _#" is abbreviated 7 .
Just like the version of CSP from HOARE [9], the version of CCSP used here is a

typed language, in the sense that with every process
�

an explicit alphabet �i� � � ����� �
is associated, which is a superset of the set of all actions the process could possibly
perform. This alphabet is exploited in the definition of

��$�
: actions in the intersection

of the alphabets of
�

and
�

are required to synchronise, whereas all other actions of
�

and
�

happen independently. Because of this, processes with different alphabets may
never be identified, even if they can perform the same set of actions and are alike in
all other aspects. It is for this reason that we interpret CCSP in terms of typed event
structures. The constant 0 and the variables are indexed with an alphabet. The alphabet
of an arbitrary CCSP expression is given by:

� �i�D_ � �1�%�i�P" � �S�%� � �� " � u �
�� �1�I�

� �i�D7 � �S��c[7he'&(� � � �
� �i� �%
)� �1��� � ��$� �1��� � � ��&(� � � �
� �i�DyC� � � � �Fc+* u V 7 + �i� � �i5a�D7f�,*d� + y4e .

Substitutions of expressions for variables are allowed only if the alphabets match. For
this reason a recursive specification � is declared syntactically incorrect if �i� � � � � 0�U�
for some "�� + ��� .

Below we define the CCSP operators formally on the domains of (typed) bun-
dle and stable event structures with binary conflict. As our bundle and stable inter-
pretations agree on the components � , 	 , � and � , they will be given as 6-tuples
�D���G	H�G�I���1��������� , so that the bundle interpretation is found by dropping � , and the
stable interpretation by dropping � . When � is an event structure representing a CCSP

6



expression
�

then � <t� � � � � . Hence we can abstain from explicitly mentioning the
� -component in the forthcoming constructions.

Definition 7. The operators of CCSP are defined on event structures as follows:
Inaction: � � � ���KT;��Ta��Ta��T;���J�
T � .
Action prefix (for 7 + ��� � ):

� ��� < �Fc[7he &Lc �7 $4u $ + � < e
� � � <=��7h�S�I7 and � � <1� �7 $6�1� � < ��$6�
� 	�� < �Nc � �7 $ � �7 $ � �!u $ 	 < $ � e
� � � <R��c6� �7 ".� �76$6�iud")��<H$6e�&Jc6� c[7he6� �76$6�iu $ + �E<1e in which

�76")�Nc �7 $Cu $ + " e
� � � <R�Fc �P".��7s� ud" + ����	 � <=e &.c6� �76" &.c[7he6� �7b$6�iu " �*<�$6e .

Alternative composition:
� �><�� o,<
	r��c 
 � $Cu $ + �E<��qe &.c 
 � $4u $ + �><
	de
� � < � o,< 	d� 
 n $6�1� � <�� ��$6� ( j �  ��� )
� 	4<���o,<
	r�#c6� 
 nD$ � 
 nP$ � �iu $ 	4< � $ � �1j �  �
� e�&

c6� 
 nD$ � 
�� � �iu $ + �E< � � � + �E<�� �=j 0���se
� ��<���o,<
	W�Nc � 
 nP".� 
 nD$b�iu "#��< � $6�=j �  ��� e in which


 nP"���c 
 nD$4u $ + "te
� �,<�� o,<
	W��c6� 
 n ".� 
 nP$6�iud" �*< � $6�=j �  ��� e .

Parallel composition:
� � <���� �)c �D$ �� � u � < ��$6� 0+ � � e &.c6� �  � � ub� � � � � 0+ � < e

&Hc �D$  � � u � < �D$6�S�U� � � � � + � < M2� � e
� � <���� �D$ �� � � � <=�D$6� , � <���� � �  � �=����� � � � and � <���� �D$  � �=� � <1�D$6�1�U���R� � �
� 	 <���� ��c6�D$  � ��$ �  � � �!u ��$  � 0��$ �  � � � g!�D$ 	 < $ ��� $*�2$ � 0� � � � 	 � � ��� � � � � 0� � ��e
� � <���� ��c6�D" �� ��$  � � ud"#��<�$6e &�c �P�  li��$  � � u lm��� � e

in which " �� �Nc �D$  � � + � <���� u $ + "te and �  l��Fc6��$  � � + � <���� u � + lke
� � <���� �Nc �P".��$  � � u �D$'� � �! � �P" � �,<�$6�fgO� � � � �" � �P" � ��� � ��e

in which
 � �D" �1�Fcd$ + � < u V � + � � &.c � e 5b$  � + " e

and
 � �P" �1�Fc � + � � u V $ + � < &Lc � e'56$  � + "te .

Relational renaming (for y������ � ����� � ):
� �$#�% <
& �Nc[y('�$4u $ + � < �!��� < �D$6���,*[� + y4e
� ��#�% <
& �Dy ' $6�1� *
� 	)#�% <
& �Fc6�Dy ' $ ��y(* $ � �iu $ 	�<*$ �+� �D$'��$ � g�* 0��� � e
� �,#�% <
& ��c6��y4�D" ����y$'�$6�iud"#� < $be

in which yC�P" �1��c[y('�$�u $ + "�gO��� < �D$6���,*[� + y4e
� �-#�% <
& �Fc �P".��y ' $6�iud" + ����	 g2y/. � �D" � �2$be

in which y/. � �P" �1��c[$ + �E< u V * + �$#�% <
& 5by ' $ + " e .
The semantics for _ , 76� , � 
0� and � �� follows the lines of [17, 18, 2, 11]. Relational
renaming appears in [16] and [4]. For every relation y������ � � ��� � there is an operator
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y that replaces each occurrence of an action 7 by fresh occurrences of the actions c+*�u
7 y�*[e . These occurrences are pairwise in conflict, and inherit their causal relationships
from their source. The relabelling operators of CCS [12], CSP [3] and WINSKEL [18]
are special cases where y is a function; the inverse image operator of CSP [3] is the
special case where y is the inverse of a function. In case y4��7h���vT , the definition
implies that the events labelled 7 are removed; thus also the restriction operators of
CCS and [18] constitute special cases of relational renaming. Relational renaming in
turn is a special case of action refinement, as studied for instance in [5]. Also note
that every relational renaming operator can be written as the composition of an inverse
image operator and a functional renaming operator.

The meaning of the recursion constructs
��
"�� u �

��
can be given by means of least

fixed point techniques, see e.g. [17, 18]. The fact that we allow recursive specifications
of arbitrary size (in [17, 18] they are of size 1) does not create complications; we will
not repeat the definitions here. Following the standard denotational approach this yields
a bundle event structure � � ��� � and a general event structure � � ��� ��� for every closed CCSP
expression

�
. For open CCSP expressions � � ��� � and � � ��� ��� are functions from valuations

of the variables to event structures.

Proposition 2. For every CCSP expression
�

we have � ��� � ��� � �Q��� � ��� � � . Hence the
bundle event structures, seen as a subclass of the stable event structures, are closed
under the operators of CCSP.

Proof. Straightforward with Definition 7.

3 Denoting bundle event structures in CCSP

In this section we address the question which event structures can be denoted by closed
CCSP expressions of various kinds. As the events in structures � � ��� � with

�
a closed

CCSP expression have very particular names, whose choice seems to carry little se-
mantic relevance, it is for this purpose most appropriate to study event structures up to
isomorphism. Here two event structures � and

�
are isomorphic ( �	�� �

) iff �><L�����
and there exists a bijection between their sets of events preserving � (resp. � ), 	 and
labelling. Later we will see if the class of denotable event structures increases when
considering a coarser equivalence.

The following proposition allows us to exchange, within a recursion-free CCSP
expression, a closed subexpression by another expression denoting an isomorphic event
structure.

Proposition 3. (Congruence) Let �>� � � and
�

be event structures with � �� � � . Then
76�
�� 7 � � for 7 + ��� � , � 
!� �� � � 
!� ,

��
 ���� � 
 � � , � �� �� � � �� ,
�� ���� �� � �

and yC�D�E��� yC�P� � � for y 5b��� � %��� � .
Proof. Immediate from the definitions.

The next one, essentially due to HOARE [9], allows us to drop brackets and abstract
from the order of components in nested parallel compositions.
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Proposition 4. Let �>� � and � be event structures. Then �  � �� ��� �� �D� �� �  � and
� �� �� �� � .

Proof. Straightforward.

Now we are ready to state the main theorems. We start with the simplest case of finite
prime event structures with binary conflict.

Theorem 1. For every finite prime event structure with binary conflict � there is a
closed recursion-free CCSP expression

�
such that � � ��� � �� � .

Proof. As we are interested in � only up to isomorphism, w.l.o.g. we may assume that
�E<������ � , i.e. the names of the events can also be used as names of CCSP actions. Let
� � be the variant of � in which every event is labelled by itself. We first build a CCSP
expression denoting � � (up to isomorphism), by encoding all events and all elements of
the conflict and causality relation of � � in terms of CCSP constructions. Subsequently,
an expression for � is obtained by applying a renaming operator. Let �'<Q��c[7 � �q-Y-X-Y��7 Zfe ,
	�<��Fc � * � � � � ���W-X-X-Y�q� *��C� ���J��e and @E<,�Fc �D: � ��$ � ���q-Y-X-Y�q�D:�� ��$�� ��e . Then

� � � <
	
7 � �
�
�
  7 Z  � * � 
 � � � �
�
�
+ � *�� 
 ����  �D: � $ � � �
�
�
  ��:�� $�� ��� 
 _ ��� -

Here � < is not only the labelling function of � , but also one of the renaming operators of
CCSP. Note that the actions */n and �Wn ( j �  �W-X-X-Y��� ), as well as : � and $ � (�k�  �W-X-Y-X��� )
are among the actions 7 � �W-X-X-Y��7 Z . We have that � � 7  �D7 
 *[� � � �� � � 7 
 * � � and � � 7  �D7 *[� � � ��
� � *  �D7 *[� � � �� � � 7 * � � . Hence it would suffice to list as 7 � �q-Y-X-Y��7 Z only those events not in
conflict or in any causal relationship with another event. It is routine to check that the
constructed expression denotes � (up to isomorphism). The term _ � � is added in case
the alphabet of � contains actions that do not arise as the label of any event.

It is interesting to observe that the relational renaming operator is not needed in this
proof; functional renaming would suffice. The proof above holds for the syntax of
CSP—as in [3]—as well. The same cannot be done in CCS [12], because there only
handshaking communication is available.

Now we pass to the case of finite bundle event structures.

Theorem 2. For every finite bundle event structure � there is a closed recursion-free
CCSP expression

�
such that � � ��� � �� � .

Proof. The proof goes along the same lines as the previous one, except that instead of
causal links :O@E<^$ we now have to encode bundles " ��<^$ . Let "p� c[: � �W-X-Y-X��:��se .
Then the bundle " ��< $ is represented by yC�D: $b� where : is a fresh action and y is
the relational renaming c6��:s��: � ���W��:s��: � ���q-Y-X-X�W�D:h��:��s����$6��$6� e .
One may wonder to what extent relational renaming is really needed here. For the lan-
guage CCSP as given here it is, because with a straightforward structural induction one
can check that all bundle event structures that can be denoted by recursion-free CCSP
expressions with merely functional renaming only have bundles " � $ in which all
events in " have the same label. However, there are other process algebraic operators
that can take over the rôle of relational renaming.
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Theorem 3. For every finite bundle event structure � there is a closed recursion-free
expression

�
in the language from WINSKEL [18] such that � � ��� � �� � .

Proof. Winskel’s language does not have relational renaming, but only functional re-
naming and a restriction operator � . The restriction ��� � behaves like � but with its
events restricted to those with labels which lie in the set � . The parallel composition
� in Winskel’s language allows every pair of events to synchronise; if $ � is labelled 7 �
and $ � is labelled 7 � the synchronisation event is then labelled �D7 � ��7 � � . Events need
not synchronise however; an event $ � in the first component that does not synchronise
with any event of the second will be labelled by ��7 � � � � , where 7 � is the label of $ � .
For the rest Winskel’s language is the same as CCSP, but untyped. The parallel op-
erator of CCSP can be defined in terms of the operators � , functional renaming and
restriction. Although in a setting without recursion it is not possible to define CCSP’s
relational renaming operation in terms of the operations of Winskel’s language, we can,
for any finite bundle event structure � in which all actions have a different label and
any image finite relational renaming y , define a context B #�� < � - � in Winskel’s language
that behaves like y . In the definition of this context, we use as a derived construct the
interleaving operator u u u that is given by� u u u � � � � � � � � ���Kc �D7f� � � u 7 + � � � � e &.c6� � � *[� u * + �i� � ��eb���
where

�
is a functional renaming that renames each action �D7f� � � into 7 , and each action

� � � *[� into * . Let � and y be as stipulated. Now the context B #�� < � - � can be defined as

B #�� < � - � ���f� � � - � �^�D7 � u u u 
�
�
 u u u 7 Zh����� y � ���
where c[7 ' u V $ + �E<Sg � <1�D$6�S��7hg ��7f�,*[� + y4e �Fcd7 � �W-q-W-�7 Zfe , y � �Nc �D7f��7 ' �iu;��7h� *[� +
y�e and � is the functional renaming that renames each action ��7h��7 ' � into * . We claim
that � � yC�P�>� � � � � � B #�� < � � � � � for each bundle event structure � in which all actions have a
different label and any image finite relational renaming y . Using B #�� �
	 �D: $6� instead of
y4��:6$6� in the proof of Theorem 2 now yields the required result.

In the presence of sequential composition, such as the operator � in CSP, a bundle
c[: � �W-X-X-Y��:��ae �t<2$ can also be represented as �D: � 
 
�
�
+
 :��s����$ . However, a semantics
of � requires the introduction of a special event-label  , or some other additional struc-
ture, that helps to distinguish deadlock from successful termination. Arbitrary bundle
event structures with this additional structure can in general not be represented by CSP
expressions, at least not with the method employed here. Nevertheless, the construction
above would work when taking � to be a sequencing operator [5] that starts its second
argument as soon as its first argument can perform no further actions.

Next we turn to infinite bundle event structures. Obviously any bundle event struc-
ture can be denoted, up to isomorphism, in a variant of CCSP with a suitable infinitary
parallel composition

 n���� � n . If we stick to the binary versions of


and



it is straight-
forward to check that only countable event structures can be denoted (event structures
with countably many events and only countably many bundles), even in the presence
of arbitrary large recursive specifications. Thus, the best we can hope for is that every
countable bundle event structure can be denoted by a CCSP expression. We are not
sure if this is true; however, it can be established for prime event structures with binary
conflict.
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Theorem 4. For every countable prime event structure with binary conflict � there is
a closed CCSP expression

�
such that � � ��� � �� � .

Proof. Although only the binary parallel composition exists in the syntax, a count-
able parallel composition

� � �� �  
�
�
 can be created with infinite unguarded recursion,
namely as

��
" ���� u �

��
where � contains the equations " n� � � � n  " n o �� ��� � where � nC�� ��� n �i� � � � , for j + IN. However, the denotational interpretation of such a system of

equations contains only events whose existence can be proved by unwinding the recur-
sion a finite number of times. There are for instance no events in � �

��
" � u �P" � ��7  " � �

�� � �
.

Thus, for the generated parallel composition to be useful, we need to require that for
each 7 + � � there is an j with 7 0+ � n , i.e. � n � IN �>n1�UT . (*)

Now let �><`��c[7 n�uRj + IN e , where the numbering is chosen in such a way that
7 nC@E<�7 � &xj�@ � . As @E< is a partial order in which cd: + �puS:`@><�$be is finite
for all $ + �>< , this is always possible. Then the (possibly infinite) parallel composition c[7 � u;7 n @ < 7 � e contains all events that have 7 n as a causal predecessor, executed in
parallel. Hence � � 7 n �  c[7 � uh7 n @ < 7 � eb� � � is the fragment of the desired event structure
that contains all causal links starting in 7 n . Its alphabet is contained in c[7 � u �H]�j�e . The
parallel composition of all such event structures for j + IN therefore contains all causal
links of � , and satisfies (*). This structure is to be put in parallel with one containing
all conflicts, constructed in a similar way. As 	 < is irreflexive and symmetric, we only
need to implement the conflicts 7 n�	�<*7 � with j @ � . We find that � is denoted by

� �U� <
		��


n�� � ��7 n �  c[7 � u 7 n @ < 7 � eb�  �
n�� � ��7 n 
  c[7 � u����`j*g�7 n 	 < 7 � e6� � 
 _#���
We leave it as an open problem whether the same can be achieved using only finite
recursive specifications.

Due to the presence of uncountably many renaming operators, the signature of
CCSP is undecidable. This can be changed by only allowing recursive enumerable re-
naming operators, i.e. operators y ����� � �>��� � for which there exists a Turing machine
enumerating all pairs ��7h� *[� + y . Such renaming operators can be represented by the
source code describing the generating Turing machine. Codes are finite objects, and it is
decidable whether a piece of text is the source code describing such a Turing machine.
Now define a recursive enumerable version of CCSP, call it CCSP��� ��� , by requiring

� that Act is a r.e. set and all renaming operators are r.e.,
� that only r.e. subsets of Act are allowed as indices of 0 and the variables.
� and that recursive specifications � , seen as functions from � � to the CCSP expres-

sions, should be primitive recursive, with � � a primitive decidable set.

This makes the signature of the language decidable. The primitive recursive requirement
on � even makes it decidable whether a variable in a CCSP ��� ��� expression is free [4].
Now we have the following recursive enumerable version of Theorem 4:

Theorem 5. Let � be a prime event structure with binary conflict such that � < , 	4< ,
@E< , �>< are recursive enumerable sets, � < is a recursive function, and there is an algo-
rithm that for every event returns the finite set of its causal predecessors. Then there is
a closed CCSP ��� ��� expression

�
such that � � ��� � �� � .
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4 Denoting stable event structures with binary conflict in CCSP

In this section we infer from Theorem 4 that up to hereditary history preserving bisim-
ulation equivalence any countable stable event structure with binary conflict can be
denoted by a closed CCSP expression.

Definition 8. Two stable event structures � and
�

are history preserving bisimulation
equivalent ( ��� � � ) iff � <I�z��� and there exists a relation y � BC�P�>�E� BC� � �>�� �D�E< �^���,� —called a history preserving bisimulation—such that ��Ta��Ta��T � + y and
whenever �P?=���*� � � + y then

� � is an isomorphism between �P? �q@ A ��� <
�
?R� and ���*�W@�� ��� �

�
�f� ,

� ?O��? � + BC�P�E�1& V � � � � � with ����� � + BC� � � , �P? � �	� � � � � � + y and
� �
�
?*� � ,

� �2�
� � + BC� � �S& V ? � � � � with ?.��? � + BC�P�>� , �D? � ��� � � � � � + y and
� �
�
?f� � .

The bisimulation and the equivalence are hereditary ( ��� ��� � ) if moreover
� ?��? � + BC�P�E�1& V � � � � � with �����

� + BC� � � , �P? � �	� � � � � � + y and
� � � �

�
? � ,

� ���
�
� + BC� � �S& V ? � � � � with ?���? � + BC�P�>� , �D? � ��� � � � � � + y and

� � � �
�
? � .

y is functional if y ��c6�D? � � �D?R��� �
�
?R�!u ? + BC�D�E��e for a function

� 5b�><Q%� � .

Note that a functional bisimulation is always hereditary. Moreover, when checking that
a function

� 5b�><Q%��� induces an history preserving bisimulation, the second require-
ment is trivially fulfilled. JOYAL, NIELSEN & WINSKEL [10] characterised a functional
history preserving bisimulation as a categorical construction called open map.

Definition 8 also applies when � and
�

are prime or bundle event structures, or
when one of them is prime and the other is stable. We now show that every (countable)
stable event structure with binary conflict is hereditary history preserving bisimulation
equivalent with a (countable) prime event structure with binary conflict.

Definition 9. Given a stable event structure ��� �D���G	H���1��������� with binary conflict,
the associated prime event structure � � � �D� � �W@ �G	 � ���J��� � � is given by

� � � ��c[$dA�u $ + ? + BC�P�E� and ? is a minimal configuration containing $6e ,
� : A @`$�� iff ?��
� ,
� : A 	 � $ � iff � has no configuration containing both ? and � ,
� � � ��$ � �S�U����$b� .

� � is obviously a prime event structure with binary conflict, and if � is countable, then
so is � � . Moreover, it is not too hard to check that the function

� 5i� �  � given
by
� �D$ � �J� $ for $ + � � induces a history preserving bisimulation. Therefore, any

(countable) stable event structure with binary conflict is hereditary history preserving
bisimulation equivalent with a (countable) prime event structure with binary conflict.
This result also follows from the category theoretic results in [10]. In view of this,
Theorem 4 implies

Theorem 6. For every countable stable event structure with binary conflict � there is
a closed CCSP expression

�
such that � � ��� � � ���S� .
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5 Arbitrary conflict reduces to binary conflict

In [17] event structures of the form �D���
B��d\ � �1���J����� appear, in which the predicate
B��d\ of Definition 4 is explicitly given rather then generated by a binary conflict re-
lation. It is postulated that B��d\ is a downwards closed nonempty set of finite sets of
events. The configurations of such event structures and the causality relations on them
are determined exactly as in Definition 5. Note that B��d\ can equivalently be represented
by its complement: an upwards closed set CONFL of finite nonempty sets of events. An-
other equivalent representation is in terms of the minimal members of CONFL: a collec-
tion 	 of finite nonempty sets of events, such that there are no two different �1��� � + 	
with � ���

�
. Now a finite set ? is consistent or conflict-free if �^��? for no � + 	 . In

this representation event structures with a binary conflict relation are literally a special
case of the ones with arbitrary conflict relations. Statement � + 	 means that the events
in � cannot all happen in the same run. It does not place a restriction on proper subsets
of � .

In this section we show that every (countable) stable event structure is history pre-
serving bisimulation equivalent to a (countable) prime event structure with binary con-
flict. For finite prime event structures this theorem was claimed by us in [8]. The gen-
eralisation to infinite event structures was reported in [6]. The same theorem has been
discovered independently by NIELSEN & WINSKEL [14], where the first published
proof can be found. Although our proof is based on the same idea as the one of [14], it
is somewhat shorter and more constructive.

Definition 10. Let � be a countable event structure with arbitrary conflict. For $ + ��<
let 	 	 be the set of conflicts involving $ : 	 	 � c�� + 	4<Ius$ + �=e . Define the event
structure �a�P�>� by

� � � % <
& �Fc6�D$ � � � u $ + � < � � 5 	 	  IN with
�

recursive and (�� + 	 	 5 � ��� � @�u � u	�  e
� � � % <
& ���>< and � � % <
& �D$ � � �1�U� <1�D$6�
� 	 � % <
& �Fc � �D$ � � ���W��$ � � � � ���!u �D$'��$ � g � 0� � � � � ��$ 0�U$ � g V

� + 	 	 5 � �	�=�1� � � �	�=� ��e
� � � % <
& �Fc ���a�P" ���W�D$ � � � � u "#�t<2$6e in which �a�P" �=��c6��$6� � � u $ + " e
� � � % <
& ��c6�D".�W��$ � � � � u  � �D" � �2$6e in which

 � �P" �1��c[$ + �E<^u V � 5a�D$ � � � + "te .
The idea behind this definition is the following: every member � of the conflict relation
on � has u �Su elements, of which only u � u
� 

can be executed. This can be modelled as
an allocation of u �Su�� 

seats to u � u events. Let us number these seats from 0 to u � u�� � .
The event that is last in grabbing a seat can not happen. In general an event can occur
in many elements � of 	 < , namely the ones in 	 	 . In order to happen it has to grab
a seat for each of these � ’s. Now �;�P�>� is an event structure where this abstract notion
of conflict has been implemented on a more down-to-earth level. The new events are
allocations of old events to seats. To be precise, they are pairs ��$6� � � , where $ is the
name of the source event and

�
a function that for every competition � + 	 	 in which

$ participates selects a seat
� �	�=� @Fu � u�� 

. In [14] a pair �D$ � � � is called an event with a
twist; hence the choice of the letter

�
. Now the new events, which are old events allocated

to seats, inherit their labelling and their causal dependencies from their source events.
The causal dependencies are implemented by � � < or � � < , depending on whether the
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original event structure was a bundle, or a general one. Compare these definitions with
the relational renaming operator in Section 2. The conflict relation on �a�P�E� is binary.
The first set of conflicts ensures that an event can occur with only one allocation to seats
in the various conflicts. The second set, that no two events are assigned the same seat
in any particular conflict. This implements the abstract notion of conflict in � .

When an event $ � occurs is does not really matter which seats it chooses in the
various conflicts it participates in, as long as these seats are not yet taken by other events.
For each event $ that happened already, the chosen seats are given by the function�

it happened with. Now $ � has to choose an allocation function
� �

that is different
from

�
in each conflict that involves both $ � and $ . In order to make such a choice in a

computationally respectful way, we assume that all allocation functions of events that
happened previously are recursive. When $ is about to happen, it can then calculate
which seats are still free and choose a function that is recursive as well. (A function� 5 	 	  IN is recursive if there is a partial recursive function

� � 5 ����� �D�E<=�1 IN with� � � �
�
	 	 a total function. There is no need to assume that 	 	 is a decidable set.) The

resulting requirement in Definition 10 that all functions
�

should be recursive, ensures
that �;�D�E� is still countable. Without the recursiveness requirement this would not be the
case.

Theorem 7. Let � be a countable stable event structure. Then �;�P�>� is a countable
stable event structure with binary conflict and the function

� 5 �;�D�E�k9� given by� �D$ � � �1��$ induces a history preserving bisimulation. Hence �;�D�E� � ���S� .

Proof. As ��$ � � ��	 � % <
& ��$ � � � � for
� 0� � � , it follows immediately that

�
�
? is injective for

every configuration ? . Now suppose
� �P?R� contains a conflict � + 	 < . Then in ? there

must be events c6�D$ n � � n �iu $[n + �=e with
� ��$dn � @�u �Su � 

. Hence two of these events must
be in conflict, contradicting that ? is a configuration. If follows that

� �P? � is conflict-
free. It is immediate from the definition of � � % <
& resp. � � < that if ��$ � � � � ���q-Y-X-Y�q�D$dZ,� � Zf�
secures ? in �a�P�>� then $ � �q-Y-X-X��$dZ secures

� �P?R� . Hence ? is a configuration of � . It is also
immediate from the definition of � � % <
& resp. � � < that

�
preserves @EA and labelling.

Now suppose ? + BC���;�D�E��� and
� �P?R�4� �

� + BC�P�>� . We need to show that there
is an ? � + BC���a�P�>� � with ? � ? � and

� �P? � ��� �
�
. By induction on u � � u it suffices to

restrict attention to the case that there is exactly one event in �
�
�
� �P?R� , call it $ . As

�
�

is conflict-free, for every � + 	 	 we have that u �2M � �P? �
u�� u � u ��� . Hence there
exists a recursive

� 5=	 	  IN satisfying, for all � + 	 	 , � �	�=� @ u � u � 
and for no

�D$ � � � � � + ? :
� � �	�=�i� � �	�=� . It follows that ? ��� �	�� ? &Oc6��$6� � � e is conflict-free. Moreover,

any securing ��$ � � � � ���W-X-X-Y�q�D$ Z � � Z � of ? can be extended with �D$ � � � into a securing of ? � .
This follows because $ � �W-X-Y-X��$ Z ��$ is a securing of �

�
, using the definition of � � % <
& resp.

� � < . Thus ? � + BC���a�P�E��� , which had to be proved. The other requirement for
�

inducing
a history-preserving bisimulation is trivial.

By combining this insight with Theorem 6 it follows immediately that up to hereditary
history preserving bisimulation equivalence all countable stable event structures with
arbitrary conflicts are expressible in CCSP.
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