What is branching time semantics and why to use it?
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The concept of branching time in the semantics of concurrent systems is well known and well
understood. Still a formal definition of what it means for a model or equivalence to respect
branching time has never explicitly be given. This note proposes such a definition. Additionally
the opportunity is taken to voice an old but poorly understood argument for using branching
time semantics instead of models or equivalences that are fully abstract with respect to some
notion of observability.

Introduction

When comparing models or equivalences for concurrent systems, it is common practice to distinguish
between linear time and branching time semantics (see for instance DE BAKKER, BERGSTRA, KLoOP
& MEYER [1] or PNUELI [9]). In the former, a process is completely determined by the observable
content of its possible (partial) runs, whereas in the latter also the information is preserved where
two different courses of action diverge (although branching of identical courses of action may still
be neglected). Standard examples are the processes in Figure 1 and 2. In Figure 1, both processes

Figure 1: a(b+¢) vs. ab+ ac Figure 2: a(bc+ bd) vs. abc+ abd

have two complete runs, whose observable content is ab and ac respectively. However, in a(b+ ¢)
these runs diverge after the a-step, whereas in ab + ac they diverge at the onset. This difference
can also be described by pointing out that a(b+ ¢) has a partial run with observable content a
that is an initial part of each of the runs ab and ac, whereas a(b + ¢) has no such run. Hence
the two processes are linear time equivalent, but not branching time equivalent. Similarly, the two
processes of Figure 2 are identified in linear time semantics but not in branching time semantics,
since only a(bc 4 bd) has a run @ that is an initial part of both of the runs abc and abd.

Figure 3 illustrates that in branching time semantics only the branching of different courses of
action is of importance. The processes a(b+b) and ab+ ab are bisimulation equivalent [8], which is
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Figure 3: a(b+b) vs. ab+ ab Figure 4: a(bbb)> vs. a(bbbb)*>

widely considered to be the prime example of a branching time equivalence. Nevertheless, the two
runs with observable content ab diverge at a different state. One could employ a stricter notion
of branching time, in which also the branching of identical courses of action would be taken into
account. Under such a notion, the processes of Figure 3 should be distinguished, but the ones of
Figure 4 could safely be identified.

It should be pointed out that branching time is not the definition of a particular model or
semantic equivalence, but a criterion that can be satisfied by models or equivalences. A model or
equivalence that satisfies this criterion is said to be a branching time model or equivalence, to respect
branching time, or to respect the branching structure of processes. Call two processes, represented
as labelled transition systems, lree equivalent if their unfoldings into trees are isomorphic. The
two processes of Figure 4 for instance are tree equivalent, whereas the ones of Figure 1-3 are not.
Tree equivalence is strictly finer than bisimulation equivalence and thus certainly preserves the
information on where different courses of action diverge. Hence it constitutes a second example
of a branching time equivalence. Moreover, unlike bisimulation equivalence, it would still be a
branching time equivalence under the stricter interpretation of branching time contemplated above.

For processes without silent moves, it is commonly agreed that an equivalence respects branching
time iff it is finer than or equal to bisimulation equivalence. Hence this yield a candidate for a
formal definition of the concept of a branching time equivalence. However, in the presence of silent
moves, or T-steps, the situation is less clear. In VAN GLABBEEK & WEIILAND [7] it is argued that
branching bisimulation, that in the absence of silent moves coincides with plain bisimulation, takes
over this role of bisimulation in the presence of 7’s. However, this is not inherent in the definition
of the equivalence, and was meant to be a result rather than a definition. The reasoning of [7] is
illustrated in Figures 5 and 6. The first process in Figure 5 has a run with observable content ab,

Figure 5: a(b+7(b+c)+d) vs. a(r(b+c)+d) Figure 6: a(b+ 7(b+¢)) vs. ar(b+ )

that diverges from the run with observable content ac at the same point where it diverges from
the run ad. Thus it does not pass through a state in which it is still possible to continue with a
course of action that involves a ¢, but not possible to continue with a course of action involving a



d. Such a run is not present in the other process. It follows that these processes have a different
branching structure and can not be identified by a branching time equivalence. As MILNER’s notion
of weak bisimulation [8] identifies both processes, it does not respect branching time. The notion of
branching bisimulation on the other hand gives rise to a finer equivalence that does distinguish the
processes of Figure 5. The processes of Figure 6 are branching bisimulation equivalent however,
and indeed no argument can be construed that would indicate disrespect of branching time, the
key argument being that the various runs with observable content ab can be regarded as the same
course of action.

The best definition of a branching time equivalence so far is perhaps the one implicit in the
notion of a consistent colouring, introduced in [7]: An equivalence respects branching time if the
colouring on processes/states, obtained by giving equivalent processes the same colour, is consistent
in the sense of [7]. Here a sequence Cy,ay,Cy,a2,Cy, ..., ax, C is a concrete coloured trace of a
process po if there is a run py —% p1 —2 py —> --- —5 pi, such that process p; has colour Cj;
a coloured trace of p is a sequence Cy, ay,Cq,a9,Cy, ..., ar, C} obtained from a concrete coloured
trace of p by replacing any subsequence C,7,C,7,...,7,C by C'; and a colouring is consistent if
processes with the same colour have the same set of coloured traces. The idea behind a consistent
colouring is that processes with the same colour have the same potential of further courses of action.
A coloured trace indicates how these potentials vary (diminish) during a run. As expected, under
this definition branching bisimulation turns out to be the coarsest branching time equivalence.

Although this definition captures the concept of branching time reasonably well, it has the disad-
vantage of being tailored to a setting with silent moves (through the reduction C,7,C,7,...,7,C ~
C'). What would be more convincing would be a definition that in no way refers to internal ac-
tions, and still yields branching bisimulation as the coarsest equivalence respecting the branching
structure of processes. Moreover, it would be nice to know what precisely the branching structure
of a process is. This is the goal of the present paper. 1 will formally define the branching structure
of a process, and declare an equivalence to respect branching time iff it only relates processes with
the same branching structure. This will be the case iff the equivalence is finer than or equal to
branching bisimulation equivalence. Similarly a model of concurrency respects branching time iff
processes that are represented by the same semantic object have the same branching structure.

1 The branching structure of a process

Let IP be a class of processes. | assume that for each process p € IP a set run(p) of (partial) runs
is defined, equipped with a prefix ordering <, and that with each run (or ezecution) e € run(p) is
associated its observable content [(e).

Definition 1 (Pomset). A labelled partial ordered set (elpo) is a triple (E, <,[) with £ a set, <
a partial order on £, and [ a function with domain E. Two elpos (E, <g,lg) and (F,<p,lp) are
isomorphic if there exists a bijective function 7 : ' — F (an isomorphism) such that, for e, e’ € F,

e<p e oile) <pi(e’) and lp(i(e)) = lg(e). Of course isomorphism (%) is an equivalence relation,
and an equivalence class of isomorphic elpos is called a partial ordered multiset or pomset.

A first idea of what could be the branching structure of a process p € IP, is the pomset with
representative (run(p), <,l). This I will call the strict branching structure of p, as it corresponds
with the idea that the branching of all, possibly indistinguishable, runs is taken into account. In
order to arrive at a less strict definition, one needs to identify certain runs.



Definition 2 (Congruence). If ~ is an equivalence relation on a set E, then F/. denotes the set
of equivalence classes of ~ and [e]~ denotes the equivalence class containing e € F.
A congruence relation on an elpo (F, <,l) is an equivalence relation ~ on F, such that

e~f=le)=1(f) and Fe'(e<e' ~ [y Ifle~ f < [).

If ~ is a congruence on an elpo (F, <,[), then <. and [, are defined on F/. by

e e [l 3 e e <) (@3 €lalf < 7)) and L(ide) = ().
Note that these definitions are independent of the choice of representatives e € [e]~ and [’ € [f]~

This is the intermediate variant of three possible generalizations of the concept of a congruence
from algebras to algebraic structures with relations. A strong congruence would even require that
e~ fANe~fl=(e<e e f<f),sothat <. can simply be defined by [e]. <. [€]. & e < €.
A weak congruence on the other hand doesn’t require anything for <, and <. needs to be defined

by [e]lw << [€]v & 3f € [el~, [T e [¢](F < f).

Definition 3 The branching structure of a process p is the isomorphism class of (run(p)/~, <~,ls),
where ~ is the coarsest congruence on (run(p), < l). An equivalence = on ]P respects the branching
structure of processesif p = ¢ = [(run(p)/~, <~,lu)]x = [(run(q)/~, <~y l)].

Obviously a coarsest congruence on a pomset exists, as the union of arbitrary many congruences
is again a congruence. The following observations are meant as tool for deciding whether or not a
model or equivalence respects branching time.

Lemma 1 Two processes p,q € IP have the same branching structure iff there exists congruences
~p and ~g such that (run(p)/~,, <npil~,) = (run(q)/~,, <oy le,)-

Proof: This follows immediately from the following two facts, whose proofs are straightforward.

o If ~ is the coarsest and ~; any congruence on an elpo (F,<,I[), and NQ is the coarsest
congruence on (E/n~,, <oy l~,), then (/0 /ny, < ey o)) E (B <0010,
!

o If (£,<,])= (F,<,l)and ~ is a congruence on (F, <,[), then there is a congruence ~' on
(F, <,1) such that (E/~, <<,la) 2 (F/ar, <arylar). Moreover, ~' is the coarsest iff ~ is. O

~lnig

Proposition 1 Two processes p, ¢ € IP have the same branching structure iff there exists a relation
R C run(p) x run(q) with domain run(p) and range run(q), satisfying

eRf = 1(e) =1(f), Fe(e<eRf) e If(eRf < f') and If'(f < f'R7'e) & Fe(fRTe < €).
Proof: “If”: Let R be such a relation. Define ~,, (and similarly ~,) by
e~p e oe=eRAR e RAAReaR...Rf,R e, =€ (n>0).

It is easy to see that ~, is a congruence relation. Moreover, the function ¢ : run(p) — run(q)
defined by i([e]~,) = [f]~, for some f € run(q) with eRf, is well defined and an isomorphism.

“Only if”: Let i : run(p)/~ — run(q)/~ be an isomorphism. Define R by eRf < i([e]~) = [f]~-
Again it is straightforward to check that R has the required properties. a



2 The case of labelled transition spaces with and without 7

In this section I will instantiate the general definition of branching time from the previous section
for equivalences on models of concurrency that can be regarded as labelled transition spaces.

Definition 4 A labelled transition space (LTS)is a pair (IP,—) with P a class (of processes)
and —C IP x Act x IP for Act a set (of actions), such that for p € IP and @ € Act the class
{geP|p -5 q}is a set.

Notation: Write p — ¢ for (p,a,q) €= and p = for g € P : p - ¢.

The elements of IP represent the processes we are interested in, and p —— ¢ means that process p
can evolve into process ¢ while performing the action a. I use the word ‘space’ instead of ‘system’
to emphasize that the elements of an LTS are all systems under investigation, and not merely the
states of a single system.

Definition 5 (Run). A sequence of transitions pg —+ p1 —2 Py -+ pn1 —2 p, for n € N in an
LTS (IP,—) is called a run of pg. Let run(p) be the set of runs of a process p € P, and let < be
the prefix ordering on runs.

It remains to determine the observable content of a run. In case all actions are observable, let
l(po o 2 py P Pn) = @143 - - -ay,. In case Act = AU {7}, where 7 denotes an internal
or unobservable action, the observable content [(e) of a run e is the same sequence, but from which
all 7’s are removed. This completes the definition of the branching structure of members of an LTS.

Definition 6 (Back and forth bisimulation, DE NicoLA, MONTANARI & VAANDRAGER [5]). Let
(IP,—) be an LTS. Two processes p,q € IP are weakly back and forth bisimilar if there exists a
relation R C run(p) X run(q), called a weak back and forth bisimulation, satisfying
— AR
— if eRf and e == ¢’ (for o € A*), then there exists an f’ such that f == f’ and ¢'Rf’;
if ¢ Rf' and e == ¢’ (for o € A*), then there exists an f such that f == f’ and eRf;
if eRf and f == f’ (for 0 € A*), then there exists an ¢’ such that e == ¢’ and €' Rf’;
if ¢ Rf' and f == f' (for 0 € A*), then there exists an e such that e == €’ and eRf.
Here A denotes the empty run and e == ¢’ means e < e’ Al(€') = I(e)o.

Theorem 1 Let IP be an LTS. Two processes p, ¢ € IP have the same branching structure iff they
are weakly back and forth bisimilar.

Proof: Immediately from Proposition 1. O

In [5] is has been established that weak back and forth bisimulation equivalence coincides with
branching bisimulation equivalence. Hence is follows that

Corollary 1 A semantic equivalence on a labelled transition space respects the branching structure
of processes iff it is finer than or equal to branching bisimulation equivalence. |

If in Definition 3 the coarsest congruence would be replaced by the coarsest weak congruence, the
resulting ‘branching structure’” would have a distinct linear time flavour, as it would be nothing
more than the so-called (race set of a process. The coarsest strong congruence on the other hand
would on an LTS be the identity relation, causing the branching structure to become the sirict
branching structure. On an LTS two processes have the same strict branching structure iff they are
tree equivalent, as follows immediately from the definitions. Silent actions play no special role here.



3 Other models

Term models, in which a process is represented as an expression in a system description language,
labelled event structures, Petri nets, process graphs, and many other models of concurrency can
be regarded as labelled transition spaces. Namely, there are canonical definitions of the transition
relations — between two terms, event structures, nets, etc. For these models the definitions of
runs and their visible content from the previous section apply, and hence it is determined what
it means for a semantic equivalence on such a model to respect branching time. Unless causality
is taken to be part of the observable content of runs, in which case I(e) could be modelled as a
mized ordering (cf. DEGaNO, DE NicoLa & MONTANARI [4]) and the coarsest branching time
equivalence would be history preserving branching bisimulation equivalence.

Some models however, such as the failures model of BROOKES, HOARE & R0OsCOE [3], can not
be regarded as labelled transition spaces. In these cases it is often difficult to associate with a
process a prefix-ordered set of runs. However, usually such a model can be canonically interpreted
as the homomorphic image of a labelled transition space. In that case the model can be said to
respect branching time iff the canonical homomorphism does not map two processes which have
a different branching structure to the same element. Similarly, an equivalence on such a model
respects branching time iff no two images of processes with a different branching structure are
equivalent.

4 What is nice about branching time?

Semantic equivalences (and preorders) for concurrent systems are used as criteria for determining
whether implementations (say of a protocol) meet specifications. The choice of a suitable equiva-
lence (or preorder) can be motivated by means of a testing scenario. Such a scenario associates to
every system a set of ‘observable’ properties. These properties should be the ones that are impor-
tant in the given application. Now the equivalence should be such that two processes are related
only if they have the same observable behaviour (and for preorders the observable properties of
the one should be included in those of the other). But this still leaves us with an abundance of
suitable equivalences to choose from. Here one is faced with two opposite strategies.

One strategy is to choose the unique equivalence that relates two systems if and only if they
have the same observable behaviour. This equivalence is said to be fully abstract with respect to
the selected testing scenario. The advantage of a fully abstract equivalence is that it never fails
to identify two processes if they have the same observable behaviour. For this reason it may be
the best choice if the testing scenario is known and fixed once and forever. In practice however,
there appears to be doubt and difference of opinion concerning the observable behaviour of systems.
Moreover, what is observable may depend on the nature of the systems on which the concept will
be applied and the context in which they will be operating. A big disadvantage of equivalences that
are fully abstract with respect to non-stable notions of observability is that whenever a verification
is carried out using a such an equivalence, and one decides that the context in which the verified
system will be working is such that actually a little bit more can be observed that what was
originally accounted for, the verification has to be completely redone. Moreover, the correctness of
the investigated systems keeps depending on the completeness of the underlying testing scenario.



The opposite strategy is based on a concept of ‘internal structure’ of processes. The internal
structure of a process should be such that for any reasonable notion of observability you can
imagine, if two processes have the same internal structure they surely have the same observable
behaviour. According to this strategy a suitable equivalence should respect the internal structure
of processes: if two processes are equivalent they must have the same internal structure. Preferably
the equivalence should be ‘fully abstract’ with respect to this structure: processes with a different
internal structure should be distinguished. This to maximize the applicability of the notion. A
disadvantage of this strategy is that the selected equivalence may fail to identify two processes
with the same observable behaviour merely because they have a different internal structure. But
the advantage is that verifications (of the equivalence of two processes) based on this strategy
automatically count as verifications in any equivalence that is fully abstract with respect to a
testing scenario, and keep being valid if the insight in what is observable changes. Moreover, when
applying such an equivalence all bothersome considerations about observability can be skipped.

In models of concurrency that abstract from divergence, true concurrency, real-time behaviour
and stochastic aspects of systems, and represent actions by uninterpreted symbols, it appears
that the internal structure of processes can be formalized as their branching structure. This makes
branching bisimulation equivalence a preferred tool for verifications. The internal structure strategy
recommends to try a verification first in branching bisimulation semantics, and only when this fails
move to a coarser equivalence that still seems appropriate for the given application. In this move
to a coarser equivalence it would still be recommendable to minimize the amount of water (linear
time) in the wine. But of course in situations where the appropriate testing scenario is beyond
doubt, the full abstraction strategy is recommendable, and would rarely yield so fine a semantics
as branching bisimulation.

One could argue that the strict branching structure would be an even better formalization of
the internal structure of processes. This would make tree equivalence a preferred option. Although
this argument by itself has some merit, the use of tree semantics has serious drawbacks. To name
a few, the standard operational and denotational semantics of CCS-like system description lan-
guages do not coincide module tree equivalence, and deciding tree equivalence of regular processes
has a higher complexity than deciding branching bisimulation equivalence. But most importantly,
whereas in many verifications the specification and implementation are actually branching bisimu-
lation equivalent, it rarely occurs that they are tree equivalent.

Another counterargument could be that there is an equivalence coarser than branching bisim-
ulation that, although not respecting the branching structure of processes, respects their internal
structure to a sufficient degree to guarantee that any reasonable testing scenario yields an equiv-
alence that is at least as coarse. The most likely candidates for such an equivalence are weak
bisimulation or, as argued in the absence of silent moves in BLooMm, ISTRAEL & MEYER [2], ready
stmulation. However, in VAN GLABBEEK [6] | present a testing scenario for branching bisimulation
that is arguably only twice as contrived as that of weak bisimulation. Moreover, I argue that in the
presence of silent moves the case for ready simulation is not so compelling as in the 7-free situation,
and present a situation in which a more discriminating equivalence is called for.

In models of concurrency that do not abstract from true concurrency etc. the internal structure
of a process may include more than just its branching structure. The argument presented here can
just as well be used to prefer causality respecting semantics for instance.

-~
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