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1 Introduction

For the design of concurrent systems, it can be useful to consider a hierarchy of represen-
tations, which allows refinement of unstructured entities on a more abstract design level
by complex structures on a lower level. One approach which is being investigated is action
refinement where the entities being refined are the actions which a system may perform. A
single action in an abstract view may correspond to a process consisting of many actions in
a more concrete representation. Action refinement is being investigated in process algebras
[Aceto, AH, NEL] and in semantic models of concurrent systems [GG a/b/c, Vogler a/b,
BDKP, Devillers, DD a/b, BGV].

Action refinement can be modelled as an operator, taking a system description P on a given
level of abstraction as well as a refinement function ref associating processes with actions,
and yielding a system description ref(P) on a lower level, obtained by replacing action
occurrences by occurrences of the associated processes. It differs from many other operators
that are considered for concurrent systems in that applying it on a representation of a
system does not yield a representation of a different system, but a different representation

of the same system.

An important question being considered is the following: Which equivalence notions for
concurrent systems are preserved under refinement? Taking two system representations,
P, (), which are equivalent for some equivalence notion ~, we would expect that ref(P) ~
ref(Q)) for any refinement function ref. This expectation indicates a big difference between
action refinement and many other approaches for moving to a lower level of abstraction,
in which adding more information about the precise implementation of systems makes it
more likely that systems turn out to be different that were indistinguishable on the higher
level of abstraction. Our expectation is based on the idea that in the original system
representations P and () it is not known how the actions will be implemented. However, it
is decided that different occurrences of the same action will be implemented in the same
way, so that any difference between P and () that could arise after refinement is already
visible in the abstract representations, namely through the use of different action names

for corresponding events.

The preservation question has been addressed in the papers mentioned above. The usual
approach to this problem is: Take some well-established equivalence notion. If it is not
preserved under refinement, try to find the coarsest equivalence notion contained in it

which has this property (see e.g. [Vogler a/b]).

What has not been considered so far is the following question. Given a well-established
equivalence notion which is not preserved under refinement, is there a way of restricting
either the allowed refinements or the class of system representations under consideration
such that preservation of this equivalence in the restricted setting is obtained? This question

is addressed in the present paper for two of the most basic equivalences.

We consider system descriptions in which the basic building blocks are the actions which

may occur in a system. In our approach an action can be any activity which is considered as



a conceptual entity on a chosen level of abstraction. Now we distinguish atomic actions that
cannot be refined, and compound ones that can. One can think of atomic actions as being
instantaneous and of compound actions as durational. Many approaches to concurrency
in which actions are not supposed to be refined, in particular the interleaving approaches,
in which parallelism is equated with arbitrary interleaving of action occurrences, can be
thought of as dealing exclusively with the subclass of system representations were all actions
in a system are atomic. On the other hand the action refinement approaches cited above
take the possibility into account that any action can be refined. In this paper we look
at systems in which some actions are atomic, and others can be refined. In particular we
consider systems in which all action occurrences deciding choices, as well as all actions
that can occur concurrently with themselves are atomic. These restrictions turn out to
be sufficient to apply action refinement in certain interleaving semantics, while preserving
semantic equivalence. Although the distinction between atomic and compound actions
may be useful for motivating this research, technically one may just as well drop this
distinction and restrict the class of allowed refinement functions to a class of what we call
safe refinements. Those refinements do not refine action occurrences deciding choices and

actions involved in autoconcurrency.

It turns out that the branching structure (i.e. the relative order of action occurrences and
choices between different courses of action) of concurrent systems plays a role in our results.
We show that interleaving bisimulation, where the branching structure between alternative
executions is taken into account, is preserved under safe refinements. On the other hand, we
show that interleaving trace equivalence (where the branching structure is fully neglected)
is still not preserved under these restricted refinements. To investigate safe refinements
for equivalence notions between these two extremes in the linear time — branching time

spectrum has to be left for future research.

2 Basic Notions

We consider systems which are capable of performing actions from a given set Act of action
names. By an action we understand here any activity which is considered as an conceptual
entity on a chosen level of abstraction. We will not distinguish external and internal actions;

we do not consider abstraction by hiding of actions in this paper.

We will sometimes give process algebra terms for examples to make them easier to un-
derstand: + will denote choice (as in CCS), | will denote parallel composition (without
communication), a,b,... € Act denote actions, and ; denotes a general sequential compo-
sition operator (like the one of ACP). The semicolon will sometimes be omitted and we
use the usual precedence rule that ; binds stronger than the other operators. However this

notation is only used for intuition; formally our results are established for event structures.

We will describe a concurrent system by a set of events where each event corresponds to

an occurrence of some action. Therefore, events are labelled by action names.



The simplest form of event structures has been introduced in [NPW] and is usually referred
to as prime event structures with binary conflicts. A labelled prime event structure is a
tuple (F, <,#,[) where E is the set of events, < C F x E is an (irreflexive) partial order
(the causality relation), # C E x E is the so-called conflict relation, and [ : F — Act
specifies the labelling of events by action names. As usual, we require < to satisfy the axiom
of finite causes; that is, any event may have only finitely many predecessors. Furthermore,
# is required to be irreflexive and symmetric and to respect the axiom of conflict heredity:

Vd,e,fe E:d# eNd< f—= e¢# [.

A prime event structure represents a concurrent system in the following way: action names
a € Act represent actions the system may perform, an event e € E labelled with a rep-
resents an occurrence of a during a possible run of the system, d < e means that d is a

prerequisite for e and d # e means that d and e cannot happen both in the same run.

The behaviour of a prime event structure is described by explaining which subsets of events
constitute possible runs of the represented system. These subsets are called configurations.
They have to be conflict-free and they must be left-closed with respect to < (all prerequi-

sites for any event occurring in the run must also occur).

As shown in [GG a], prime event structures are well suited to define a notion of action

refinement, as long as actions are not refined by behaviours containing conflicts.

But as a consequence of the axioms explained above, it is cumbersome to define a more
general notion of refinement directly for prime event structures. Whenever a given event
occurs, it has to be “enabled” by a unique set of events that is independent of the particular
run of the system, namely by all its predecessors according to the causality relation. How-
ever, when refining a by a; + a5 in a; b, b should occur alternatively caused by a; or by a,.
In prime event structures, this may only be modelled by duplicating the b-event, leading to
complicated definitions and proofs. Hence more expressive event structure representations
are being used for refinement. Free event structures as defined in [DD a] seem to be weakest
extension of prime event structures to allow refinements with conflicts in a straightforward
way. However, difficulties with the interpretation of the notion of causality in this model
lead in [DD b] to a restriction such that prime event structures are no longer a subclass.
In [GG a, GG b], flow event structures [BC] have been used which are also a convenient
model for CCS. This is the model we have chosen here as well, in order to establish our

results also for refinements with conflicts.

We will now introduce the main concepts of flow event structures following closely [Boudol].



Definition 2.1

A (labelled) flow event structure (over an alphabet Act) is a 4-tuple
E=(FE,<,#,10), where

— F is a set of events,
— < C K x E is an irreflexive relation, the flow relation,
— # C FE x FE is a symmetric relation, the conflict relation,

— [ E — Act is the labelling function.

Let IE denote the domain of flow event structures labelled over Act. The components of
& € IE will be denoted by E¢, <¢,#¢ and [¢. The index &€ will be omitted if clear from the
context.

~J

Two flow event structures € and F are isomorphic (€ = F) iff there exists a bijection
between their sets of events preserving <, # and labelling. Often, we will not distinguish

isomorphic event structures; the names of events are not important for us.

The interpretation of the conflict and the flow relation is formalised by defining configu-
rations of flow event structures. Configurations must be conflict free; in particular, self-
conflicting events will never occur in any configuration. d < e will mean that d is a possible
immediate cause for e. For an event to occur it is necessary that a complete non-conflicting
set of its causes has occurred. Here a set of causes is complete if for any cause which is not
contained there is a conflicting event which is contained. Finally, no cycles with respect to

causal dependence may occur.

We will only consider finite configurations here. As usual, we assume that in a finite period
of time only finitely many actions may be performed. Now the requirement says that we
only consider runs which are executable in a finite period of time. This is no restriction
since the infinite configurations which are usually considered are completely determined
by the finite ones (see e.g. [Boudol]).

Definition 2.2 Let £ € IE.

(i) X C E is left-closed up to conflicts it Vd,e € E:ife € X,d < eand d ¢ X then
there exists an f € X with f < e and d # f.

X C Eis conflict-free iff #¢[X = 0.
(ii) X C E is a (finite) configuration of £ iff X is finite, left-closed up to conflicts

and conflict-free and does not contain a causality cycle: <y := (< N(X x X))*
is irreflexive. Conf (&) denotes the set of all (finite) configurations of £.

(iii) A configuration X € Conf (&) is called mazimal iff X CY € Conf(€) implies
X =Y. Itis complete it Vd e E:d & X = Je € X with d # e.



The relation <y expresses causal dependence in the configuration X. Note that prime
event structures are special flow event structures defining d < e iff d < e. In prime event
structures, the requirement of left-closedness up to conflicts for configurations reduces to
left-closedness: Vd,e € E :if e € X Ad < e then d € X; furthermore, in each config-
uration X, the relation <x coincides with <. However in prime event structures every
maximal configuration is complete, whereas in flow event structures this need not be the
case (although every complete configuration must be maximal). In [GG c] the difference be-
tween complete and maximal configurations is used to model deadlock behaviour: complete

configurations indicate successful termination, whereas incomplete maximal configurations

model deadlocks.

The following observations may offer some additional motivation for the definition of con-

figurations above.

Definition 2.3 Let £ € IE, X € Conf(E).

(i) X enablese € F iff e ¢ X and X U {e} € Conf(E).

(ii) A subset Y C X isa prefirof X iff Vde X, ecY: d<xye=deY (i.e.Yis
left-closed in X w.r.t. <x).

Proposition 2.1 Let £ € [E, X € Conf(&).

(i) X enables eiff e & X, =(3d € X with d#te) and Vd < e we haved € X vIif € X
with f < e and d#f.

(ii) X can be written as X = {e,...,e,} such that for & <n:{es,...,er} enables
€k+1-
(iii) For Y C X, Y € Conf(€) iff Y is a prefix of X.

Proof See [Boudol]. O

We now define transition relations between configurations, describing which event or which

action may occur in a configuration and which configuration may then be obtained.

Definition 2.4 Let € € IE.

X —=¢ X" iff X enables € and X' = X U {e}.
X e X'iff X —¢ X' and l(e) = a € Act.

The index £ is omitted if clear from the context.

Next we introduce a relation cox expressing when two events are concurrent (independent)
within a configuration X, as well as a global relation co, expressing possible concurrency,
and show that the relations correspond. Furthermore we define when there is a choice

between two events.



Definition 2.5 Let £ € IE.

(i) For X € Conf(E), let cox € X x X be defined by
dcox eiff ~(d<x eVe<xd).

(ii) co C E x E is defined by
d co e iff 3X € Conf(£), X enables both d and e and X U {d, e} € Conf(E).

(iii) ch C F x E is defined by
d ch e iff 3X € Conf(€), X enables both d and e and X U{d, e} ¢ Conf(E).

Proposition 2.2 Let £ € [E, d,e € E.

(i) d coe & X € Conf(€) with d cox e.
(ii) d ch e = d# e.

Proof

(i):

“=7: Let d co e. Then there exists X € Conf (&) with d, e both enabled by X.

Let Y := X U{d, e}. We show that d coy e.

Assume d <y e. Then X U {e} would not be a prefix of ¥, hence X U {e} would not be a
configuration and e not enabled by X. Thus =(d <y €) and by symmetry —(e <y d).

“=": Let X € Conf(€) with d cox e. Let X' =X —{fe X |d<x fVe<x [}

d,e € X' since d,e € X and d and e are not in < y-relation.

Moreover d and e are maximal in X' w.r.t. <x.

Let Xy := X' —{d}, Xy := X' —{e}, X" := X' — {d, e}.

Then X', X1, X3, X" € Conf(&) with proposition 2.1(iii) and d co e.

(ii):

Suppose d ch e, but =(d # €). We show that for each configuration X enabling d and e,
also X' := X U{d, e} is a configuration.

Let X € Conf(€), with X —% X; and X - X,. Let X' := X U {d, ¢}.

X' is finite, since X € Conf(€).
X' is conflict-free, since X1, Xy € Conf(€) and —(d # e).

X' is left-closed up to conflicts:
Suppose f € X', ge E— X" and g < f. Then f € X, fori =1ori=2and g € X;, so
dh € X; C X' with h < f and g#h, since X; € Conf(E).

X' contains no cycles w.r.t. <:

Suppose X' contains a causality cycle. Since X; € Conf(&) this cycle must contain d.
However, we will show that there is no ¢ € X’ with d < ¢. Since X, X; € Conf (&), X must
be a prefix of X; by proposition 2.1(iii), implying that d is maximal in X;. Thus the only
candidate for ¢ is e. So suppose d < e. Since d ¢ X3 and e € Xy € Conf () there must be
an f € Xy C X' with f < e and d# f, contradicting the conflict-freeness of X".



Thus X" € Conf (). O

For prime event structures, the choice relation coincides with the non-inherited conflicts.

Definition 2.6 Let £ € IE be a prime event structure.

#' C E x E (immediate conflict) is defined by
d#'eiffd#e, f<d=-(f#e)and f <e= (f # d).

Proposition 2.3 Let £ € IE be a prime event structure, d, e € E.
Then d ch ¢ & d #'e.

Proof

“=7: Let d ch e. Then there exists X € Conf (&) enabling both d and e.

d#e by proposition 2.2.

Assume there is an f with f < d. Then f € X, since X U {d} is left-closed. Since f €
X UA{e} € Conf(E), we have —( f#e).

Similarly f < e = —(f # d).

“="letd#le. Let X :={feE|f<dV[f<e}

Since d # e it cannot be the case that d < e or € < d by the axiom of conflict heredity and
the irreflexivity of #. Thus d,e ¢ X.

Let X; = X U{d} and X3 := X U {e}.

Since d # e we have X U {d,e} ¢ Conf(E), so it suffices to prove that X, X; and X, are

configurations.

X, X; and X, are finite (axiom of finite causes).

X, Xy and X, are left-closed (transitivity of <).

X, X, and X, are conflict-free:

It suffices to prove that X; is conflict-free, since this implies that X is conflict-free, and
the conflict-freeness of X, follows by symmetry.

Suppose d', ¢’ € X1 and d" # €. We may assume d’ < d and ¢’ < e, since the cases that
d" and €' are both predecessors of d or of e are excluded by the axiom of conflict heredity
and the irreflexivity of #. But then d # ¢’ by conflict heredity, violating the definition of

i 0

Note that for prime event structures the conflict relation is fully determined by the im-
mediate conflicts, and hence by the choice relation. On the other hand, in flow event
structures the choice relation does not determine the conflict relation. Moreover, the part
of the conflict relation that is not determined by the choice relation influences the set of

configurations (as well as the deadlock behaviour [GG c]).



Example 2.1

Consider the following two flow event structures, where the labelling is the identity.

Here and later we represent the flow relation by arrows of the form ——.

| QW | a\/l

In both event structures the events a and ¢ are in semantic conflict, in the sense that
they cannot occur in the same configuration. However, in F they are not in syntactic
conflict: =(a #r c).

We have K¢ = Er, <¢ = <7 and [¢ = [r. Moreover the choice relations of £ and F
agree: only a ch b. Nevertheless £ has a configuration {a,d} which F has not.

Refinement of actions in flow event structures may now be defined as follows. We assume
a refinement function ref : Act — IE—{O} (where O denotes the empty flow event
structure) and replace each event labelled by a by a disjoint copy of ref(a). The conflict
and causality structure will be inherited. Refinements in which some actions are replaced
by the empty process can drastically change the behaviour of concurrent systems and can
not be explained by a change in the level of abstraction at which these systems are regarded

[GG a]. Therefore they are not considered here.

Definition 2.7

(i) A function ref : Act —IE—{O} is called a refinement function .
(ii) Let £ € IE and let ref be a refinement function.
Then the refinement of € by ref, ref(£), is the flow event structure defined by
— Erpe) = {(e;€) | e € Ee, €' € Eref(ls(e))}7
— (d,d") <pepe) (e,¢') iff d <g e or (d=eNd <50, €),
— (d,d") #repe) (e,€) it d #e eor (d=eNd #.e0.0 €),
— Lepe)(€6,€) = Lefiie(ep (¢) -

The following examples illustrate that the usual interleaving equivalences are not preserved

under this refinement operation.

The event structures we consider in examples from now on will always be prime; hence
we will only draw immediate conflicts and omit arcs for the elements of the flow relation

obtainable by transitivity.



Example 2.2

Consider the event structures £ and F below, corresponding to a|b and ab + ba.

E= a b F = C‘l # 1’)
b a

& and F are indistinguishable in any kind of interleaving semantics. We refine action
a by ajas, i.e. ref(a) = ay ——— az, and then have

ref(€) = a1 b, ref(F)= a  # b

]

G2 T T
b a9

ref (€) and ref (F) are not interleaving equivalent, since a1bay is a possible execution

of ref (€) but not of ref (F).

Example 2.3
Consider the event structures £ and F below, corresponding to a|a and aa.

£ = a a F = a

& and F are indistinguishable in common interleaving semantics. We refine a by aja,
and then have

ref(€) = a1 a1 , ref(F)= a .
ay  ay ay

ay

ay

Now ref(€) and ref(F) are not interleaving equivalent, since only in ref(€) it is
possible to start with two occurrences of a;.

10



We observe that in example 2.2 an event of F is refined which decides a choice. In example
2.3, an action is refined which may occur concurrently with itself. Hence we have identified
two classes of events which will definitely cause problems for interleaving semantics if
they are refined. We will now call actions labelling such events critical (with respect to
a particular event structure £) and consider the subclass of flow event structures where
all critical actions are atomic, in the sense that they cannot really be refined. We could
restrict the allowed refinement functions such that atomic actions may only be ‘refined’
by themselves. However, our refinement theorem will hold even in a slightly more general
setting. First of all we may allow renaming of atomic actions, obtained by refining them
by conflict-free event structures containing exactly one event, as well as restriction of
certain (atomic) actions, obtained by refining them by event structures consisting of one
self-conflicting event. In this way the relabelling and restriction operators of CCS can
still be understood as instances of the refinement operator. Moreover we allow generalised
renamings, replacing (atomic) actions by (possibly infinite) choices a; +as+.... The crucial
restriction is that the execution of any event of a refined atomic action a leads to its
immediate termination, thereby preserving atomicity for these actions. Formally this is
ensured if and only if every non-empty configuration of ref(a) is complete. This can be

obtained by requiring that all events of ref(a) are mutually in conflict.

Definition 2.8 Let £ € [E.

(i) An action a € Act is eritical in € iff
dd,e € £ with d ch e and [(d) =a or
dd,e € E, d # e with d co e and I(d) = l(e) = a.
Crite := {a € Act | a is critical in £} is the set of all critical actions in £.

(ii) A refinement function ref is called safe w.r.t. € iff

Va € Crite Vd, e € Erg(a), d# €1 d#trep(a)e.

Proposition 2.4 Let £ € IE, a € Crite, and ref a safe refinement w.r.t. &.

Then every non-empty configuration of ref(a) is complete.

Proof Trivial. O

In flow event structures it may be difficult to find out which actions are critical and should
therefore be atomic. A safe strategy is to avoid autoconcurrency altogether and make every
event which is in conflict with another event atomic. The result of this strategy depends on
the particular flow event structure representation of a system by the choice of a syntactic
conflict relation # (recall that semantic and syntactic conflict do not coincide for flow
event structures). The most liberal possibilities for refinement are obtained by choosing a

minimal conflict relation to model the intended behaviour.

11



3 Interleaving trace semantics

We now investigate whether interleaving equivalences are preserved by safe refinements.
We start by considering the simplest notion, the usual interleaving trace equivalence where

the possible sequences of actions are compared.

Definition 3.1

w=aday...a, € Act” is a (sequential) trace of £ € IE iff
3Xg,..., X, € Conf(€): Xo=0and X;_; 5 X; ,i=1,...,n.

SeqTraces(€) denotes the set of all sequential traces of £.

E,F € [E are called interleaving trace equivalent (€ ~;; F) iff
SeqTraces(E) = SeqTraces(F).

The following example shows that this equivalence is not preserved by safe refinements.

Example 3.1

Consider the event structures £ and F below, corresponding to a(b|c) and abe + ach.

&= a F =

N\

b c

#

O ——— O —=—Q
SN —— (O —=—Q

E w2 F, since the only traces for both event structures are abc and acb (and the

prefixes). Action b is not critical. We refine b by b1b,.

ref(€) = a ref(F)= a # a

b‘l C bl C
bg b2 bl
C bg

We have ref (€) #i ref(F), since abie € SeqT'races(ref(£)),
but abic & SeqTraces(ref(F)).

12



One can now ask if it is possible to strengthen the requirement of safe refinements, say
into trace-safe refinements, by requiring more actions to be atomic, in such a way that
interleaving trace equivalence is preserved under trace-safe refinements. Requiring all ac-
tions that can occur concurrently with another action to be atomic would work, but this

constraint is very restrictive. It seems not easy to find a less restrictive one.

4 Interleaving bisimulation semantics

In this section we will show that interleaving bisimulation equivalence [Park, Milner] is

preserved under safe refinements.

Definition 4.1 Let £, F € IE.

A relation R C Conf(€) x Conf(F) is called an interleaving bisimulation between &
and F iff (0,0) € R, and if (X,Y) € R then

- X 5 X'= 3V’ withY - Y’ and (X", Y’) € R,

- Y > Y' = 3X’ with X - X' and (X", Y’) € R.

€ and F are interleaving bisimulation equivalent (€ ~;; F) iff there exists an inter-

leaving bisimulation between £ and F .

In [GG a] it has been shown that the configurations of a refined event structure may be
deduced compositionally from the configurations of the original event structure and those
of the refinements of actions. We will use this result and the following lemmas in the proof

of the refinement theorem.

Definition 4.2 Let £ € IE, let ref be a refinement function.

(i) We call X a refinement of a configuration X € Conf (&) by ref iff
- X = g&({e} x X.) where Ve € X : X, € Conf(ref(ls(e))) — {0},
— busy(f() C maxz(X) where
- max(X) denotes the set of all maximal events in X w.r.t. <x,
busy(j() =X — compl()N() and
- compl(X) :={e € X | X, is a complete configuration}.

(ii) ref(X) denotes the set of refinements of X € Conf(E) by ref
and for S C Conf(E), ref(S) = |J ref(X).

XeS

Clearly, if X € ref (X) then X = pr(X ) ={e € Fe | 3¢’ € Erpqqe) : (e,€') € X} and we
have compl(X) C pr(X), pr(X) — maz(pr(X)) C compl(X).

13



Proposition 4.1 [GG a] Let £ € IE, let ref be a refinement function.
Then Conf(ref(€)) = ref(Conf(£)).

Lemma 4.1 Let € € IE, ref a refinement function and X € Conf (ref (£)).

If compl(X) C Y C pr(X) then Y € Conf(E).

Proof Immediate from proposition 2.1(iii), since pr(X) — max(pr(f()) CY C pr()N(). O

With lemma 4.1 we have in particular compl(X ) € Conf(€).

Lemma 4.2 Let £ € IE, X € Conf(€) and a ¢ Crite.
XLXl, XL>X2:>X1 :XQ.

Proof Immediate from the definitions. O

Lemma 4.3 Let £ € IE, ref a safe refinement function w.r.t. £ and X € Conf(ref(E)).
Ifee pr()N() — compl(f() then lg(e) & Crite.

Proof With proposition 4.1 we have X, € Conf(ref(lg(e))) — {0}.
If I¢(e) € Crite than X, is complete by proposition 2.4.
However, since e € pr()N() — compl()N(), X, is not complete. O

Lemma 4.4 Let £ € IE, ref a safe refinement function w.r.t. € and X € Conf(ref (E)).
If compl(X) U {e} € Conf(E) then pr(X) U {e} € Conf(E).

Proof W.l.o.g. we assume that e & pr(X).
With proposition 2.1(i) we prove that pr()N() enables e.

Suppose dd € pr()N() with d#e. Since compl(X ) U {e} is conflict-free, it follows that d €

pr()N() — compl()N(). Thus compl(X) enables d (with lemma 4.1) as well as e, so d ch e.
However, with lemma 4.3 we have [(d) € Crite, contradicting d ch e.

Now suppose d < e and d ¢ pr(X ) 2 compl(X ) Since compl(X ) U{e} € Conf(E) there is
an f € compl(X) C pr(X) with f < e and d#f. O

With these lemmas we can prove the theorem.

Theorem 4.1 Let £, F € IE, let ref be a safe refinement function w.r.t. £ and F.
Then Emp F = ref(E) ~y ref(F).

14



Proof Let R be a bisimulation between £ and F.
Let & = {(X,Y) € Conf(ref(E)) x Conf(ref(F)) |

(compl(X),COmpl(f/)) € R, B .

thereNeXi~st bijecNtions fN:pr(X) — pr(Y) with [=(f(e)) = le(e)
and f: X — Y with f(e,¢') = (f(e),€)}

We show that R is a bisimulation between ref (€) and ref (F).
i. Obviously (0,0) € R.
ii. Let (X,Y) € R. Then (compl(X),compl(Y)) € R and there are bijections f and f as

required in the definition of R. We have to show the bisimulation properties. It suffices to

check one of them, the other follows by symmetry.
Let X % X' Let X' — X = {(e°,e*)}, le(€?) = b. Then L,epe)((€, €%)) = Ly (€¥) = a.
Now we have to show : Y’ € Conf (ref(F)) with Y - Y and ()N(’,f/’) € R.

For the construction of Y, we distinguish two cases.

1. pr(X') = pr(X).
In this case we can use the bijection f to define Y”, since its domain is not affected by
adding the new event.

Let V' o= {(f(0),) | (e,¢) € X7
With Y = {(f(e),€¢') | (e;¢') € X} we have Y' =Y U {(f(e°), e*)}.
First we show that Y” is a configuration with ¥ - Y.

Then we define the new functions f’ and f’ and check their properties.
Finally we prove (compl(j(’), compl(f/’)) € R.

With proposition 4.1 we show Y’ € Conf (ref (F)):
= pr(Y') = f(pr(X")) = f(pr(X)) = pr(Y) € Conf(F), since Y € Conf (ref (F));

— Vd e pr(Y'): Y = Xj(y) € Conf(ref(le(f71(d)))) = {0} = Conf (ref(Ix(d))) — {0},
since X’ € Conf(ref(£));

— busy(Y') = pr(Y') — compl(Y") C pr(Y') — compl(Y') € maz(pr(Y)) = maz(pr(Y’)),
since pr(f/) = pr(f/’) and compl(f/) C compl(ff’).
Thus Y is a configuration of ref (F).
Since L7y ((f(€°),€*)) = sy (€*) = a we have y L v
Let f:= fand f':= fU{((eo, e*), (f(e°),e*))}. The new function f" is bijective, since the
events (e°,e*) and (f(e°), e*) do not occur in the domain and the range of f, respectively.

By construction f’ and f’ have the required properties.

In order to establish (X', Y"’) € R we still have to show (compl(X'),compl(Y")) € R.

Again we have two cases:
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1.1. compl(X') = compl(X).
Using the properties of f7, compl(Y") = f'(compl(X")) = f(compl(X)) = compl(Y),
hence (compl(X’),compl(Y’)) € R.

1.2. compl(X') # compl(X).
Then compl(X )= compl()N() U {e°} and compl()N() LN compl()N(’).
Since (compng),compl( )) € R there is a Y’ € Conf(F) with compl(Y) Ly
and (compl(X'),Y') € R.
Using the properties of f’, compl(N’) = f’(compl(j(’)) = f(compl(X ) U {e°}) =
compl(Y) U {f(e)}, hence compl(Y) LI compl(Y").
Since e° € compl(X') C pr(X') = pr(X), it follows thatNeO € pr(X) — compl(X) and
with lemma 4.3 b = lg(e°) € Crite. Hence Y’ = compl(Y') with lemma 4.2.
Thus (compl(X"), compl(Y")) € R, which had to be proved.

2. pr(X') # pr(X).
The proof of the second case is similar to that of the first case. However the construction

of Y is more complicated since we cannot just use the function f. We need to describe the

events by which f is extended.

pr(X') = pr(X) U {e°} and lg(e®) = b.
compl(X) = { compl(X)U {e°} if {e*} 'is a complete configuration of ref(b)
compl(X) otherwise
Thus compl(X') C compl(X) U {e°} C pr( X) U {e°} = pr(X').
With lemma 4.1 it follows that compl( YU {e°} € Conf(E)
Hence compl(X) LN compl(X) U {e°}.
Since (compl()N() compl(Y)) € R, there i is a d° € Er with compl(f/) SN compl( yu{de},
I7(d°) = b and (compl(X) U {e°}, compl(Y) U {d°}) € R.
We now extend the bijection f by (e°,d°).
For this we Verify that d° is not in the range of f:
Suppose d° € pr(Y). Since d° ¢ compl(Y) f~Hd°) e pr()N()—compl()N() Thus compl()N()U
{f~4(d°)} € Conf(€) with lemma 4.1 and compl()N() N compl(X)U{f~1(d°)}.
Hence b & Critg with lemma 4.3 and then e® = f_ (d°) with lemma 4.2.
Thus e°® € pr()N() which contradicts pr(X') # pr(X). So d° ¢ pr(f/).

Now we can define Y, f' and f'.
Let f':= f U (e d°) and Y= {(f'(e),€) | (e,€) € Xl1=YU {(d°, e*)}.
Using proposition 4.1 we proof Y’ € Conf(ref (F)):

— pr(Y") = pr(Y) U {d°} € Conf(F) with lemma 4.4;

— Vd e pr(Y'): Y] = X,y € Conf(ref(Is(f7(d))) —{0} = Conf (ref (Ix(d))) —{0}:
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— busy(Y') = pr(Y") — compl(Y') = pr(Y) U {d°} — compl(Y") C
pr(Y) U {d°} — compl(Y), since compl(Y) C compl(ff ).
It remains to show that pr( yu{de} — compl(Y) C maz(pr(Y) U {d°}).
By proposition 2.1(iii) pr(Y) is a prefix of pr(Y)U {do} so d° € ma:ﬂ(pr( yu{d°}).
Now suppose d € pr(f/) — compl(Y) but d & maz(pr(Y)U{d°}).
Then d € ma”c(pr(ff)) by proposition 4.1, 5o d <, py(gey d°. Since compl(Y) U {d°}
is a prefix of pr(Y)U{d°} by proposition 2.1(iii), we have d € compl(Y) which yields
a contradiction.

Thus Y’ is a configuration of ref (F) and with [, (d°, €*) = a we have y % v
The new function f’ is bijective, as shown above. The same for f':= fU{((eO, e*), (d°,d*))}.

By construction f’ and f’ have the required properties.

Now we show ()N(’, )N/’) € R by proving (compl(f(’), compl(f/’)) € R.

There are again two cases:

2.1. compl()N(’) = compl()N().
By construction of Y’ (as in part 1.1 of the proof) compl(ff’) = compl(?) and hence
(compl(X"), compl(Y")) € R.

2.2. compl( " £ compl(X)
Then compl(X) = compl(X) U {e°} and by Constructlon of Y’ compl(Y') =
compl(Y') U {do} We had already that (compl(X) U {e°}, compl(Y)) U {d°}) € R,
hence (compl(X’),compl(Y’)) € R.

Thus R is a bisimulation between ref(€) and ref (F). O

Conclusion

We have investigated here how two well-established interleaving equivalences behave with
respect to a restricted notion of action refinement. We have considered a class of refine-
ments where events deciding choices are considered atomic. It turned out that interleaving
trace semantics — neglecting the branching structure — is then still not preserved under

refinements whereas interleaving bisimulation yields the desired preservation result.

It remains to be investigated what happens for other interleaving equivalences in the linear
time — branching time spectrum, e.g. for failure semantics. Another interesting question
is what happens for step semantics (where several actions happening simultaneously are
considered). The example a(be|d) versus ab(c|d) + a(b|d)c with ref(d) = did; may be used
to show that step trace equivalence is not preserved under safe refinements as considered
here. For step bistmulation equivalence we conjecture that we do have preservation under

safe refinements.
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